Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islln3.b | |- B = ( Base ` K ) |
|
islln3.j | |- .\/ = ( join ` K ) |
||
islln3.a | |- A = ( Atoms ` K ) |
||
islln3.n | |- N = ( LLines ` K ) |
||
Assertion | islln2 | |- ( K e. HL -> ( X e. N <-> ( X e. B /\ E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islln3.b | |- B = ( Base ` K ) |
|
2 | islln3.j | |- .\/ = ( join ` K ) |
|
3 | islln3.a | |- A = ( Atoms ` K ) |
|
4 | islln3.n | |- N = ( LLines ` K ) |
|
5 | 1 4 | llnbase | |- ( X e. N -> X e. B ) |
6 | 5 | pm4.71ri | |- ( X e. N <-> ( X e. B /\ X e. N ) ) |
7 | 1 2 3 4 | islln3 | |- ( ( K e. HL /\ X e. B ) -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) |
8 | 7 | pm5.32da | |- ( K e. HL -> ( ( X e. B /\ X e. N ) <-> ( X e. B /\ E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) ) |
9 | 6 8 | syl5bb | |- ( K e. HL -> ( X e. N <-> ( X e. B /\ E. p e. A E. q e. A ( p =/= q /\ X = ( p .\/ q ) ) ) ) ) |