Metamath Proof Explorer


Theorem islln4

Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b
|- B = ( Base ` K )
llnset.c
|- C = ( 
llnset.a
|- A = ( Atoms ` K )
llnset.n
|- N = ( LLines ` K )
Assertion islln4
|- ( ( K e. D /\ X e. B ) -> ( X e. N <-> E. p e. A p C X ) )

Proof

Step Hyp Ref Expression
1 llnset.b
 |-  B = ( Base ` K )
2 llnset.c
 |-  C = ( 
3 llnset.a
 |-  A = ( Atoms ` K )
4 llnset.n
 |-  N = ( LLines ` K )
5 1 2 3 4 islln
 |-  ( K e. D -> ( X e. N <-> ( X e. B /\ E. p e. A p C X ) ) )
6 5 baibd
 |-  ( ( K e. D /\ X e. B ) -> ( X e. N <-> E. p e. A p C X ) )