Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | llnset.b | |- B = ( Base ` K ) | |
| llnset.c | |- C = ( | ||
| llnset.a | |- A = ( Atoms ` K ) | ||
| llnset.n | |- N = ( LLines ` K ) | ||
| Assertion | islln4 | |- ( ( K e. D /\ X e. B ) -> ( X e. N <-> E. p e. A p C X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | llnset.b | |- B = ( Base ` K ) | |
| 2 | llnset.c | |- C = ( | |
| 3 | llnset.a | |- A = ( Atoms ` K ) | |
| 4 | llnset.n | |- N = ( LLines ` K ) | |
| 5 | 1 2 3 4 | islln | |- ( K e. D -> ( X e. N <-> ( X e. B /\ E. p e. A p C X ) ) ) | 
| 6 | 5 | baibd | |- ( ( K e. D /\ X e. B ) -> ( X e. N <-> E. p e. A p C X ) ) |