Step |
Hyp |
Ref |
Expression |
1 |
|
islmhm.k |
|- K = ( Scalar ` S ) |
2 |
|
islmhm.l |
|- L = ( Scalar ` T ) |
3 |
|
islmhm.b |
|- B = ( Base ` K ) |
4 |
|
islmhm.e |
|- E = ( Base ` S ) |
5 |
|
islmhm.m |
|- .x. = ( .s ` S ) |
6 |
|
islmhm.n |
|- .X. = ( .s ` T ) |
7 |
|
df-lmhm |
|- LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |
8 |
7
|
elmpocl |
|- ( F e. ( S LMHom T ) -> ( S e. LMod /\ T e. LMod ) ) |
9 |
|
oveq12 |
|- ( ( s = S /\ t = T ) -> ( s GrpHom t ) = ( S GrpHom T ) ) |
10 |
|
fvexd |
|- ( ( s = S /\ t = T ) -> ( Scalar ` s ) e. _V ) |
11 |
|
simplr |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> t = T ) |
12 |
11
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Scalar ` t ) = ( Scalar ` T ) ) |
13 |
12 2
|
eqtr4di |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Scalar ` t ) = L ) |
14 |
|
simpr |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> w = ( Scalar ` s ) ) |
15 |
|
simpll |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> s = S ) |
16 |
15
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Scalar ` s ) = ( Scalar ` S ) ) |
17 |
14 16
|
eqtrd |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> w = ( Scalar ` S ) ) |
18 |
17 1
|
eqtr4di |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> w = K ) |
19 |
13 18
|
eqeq12d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( ( Scalar ` t ) = w <-> L = K ) ) |
20 |
18
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` w ) = ( Base ` K ) ) |
21 |
20 3
|
eqtr4di |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` w ) = B ) |
22 |
15
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` s ) = ( Base ` S ) ) |
23 |
22 4
|
eqtr4di |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( Base ` s ) = E ) |
24 |
15
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` s ) = ( .s ` S ) ) |
25 |
24 5
|
eqtr4di |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` s ) = .x. ) |
26 |
25
|
oveqd |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( x ( .s ` s ) y ) = ( x .x. y ) ) |
27 |
26
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( f ` ( x ( .s ` s ) y ) ) = ( f ` ( x .x. y ) ) ) |
28 |
11
|
fveq2d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` t ) = ( .s ` T ) ) |
29 |
28 6
|
eqtr4di |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( .s ` t ) = .X. ) |
30 |
29
|
oveqd |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( x ( .s ` t ) ( f ` y ) ) = ( x .X. ( f ` y ) ) ) |
31 |
27 30
|
eqeq12d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) <-> ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) |
32 |
23 31
|
raleqbidv |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) <-> A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) |
33 |
21 32
|
raleqbidv |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) <-> A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) |
34 |
19 33
|
anbi12d |
|- ( ( ( s = S /\ t = T ) /\ w = ( Scalar ` s ) ) -> ( ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) <-> ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) ) |
35 |
10 34
|
sbcied |
|- ( ( s = S /\ t = T ) -> ( [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) <-> ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) ) ) |
36 |
9 35
|
rabeqbidv |
|- ( ( s = S /\ t = T ) -> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } = { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } ) |
37 |
|
ovex |
|- ( S GrpHom T ) e. _V |
38 |
37
|
rabex |
|- { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } e. _V |
39 |
36 7 38
|
ovmpoa |
|- ( ( S e. LMod /\ T e. LMod ) -> ( S LMHom T ) = { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } ) |
40 |
39
|
eleq2d |
|- ( ( S e. LMod /\ T e. LMod ) -> ( F e. ( S LMHom T ) <-> F e. { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } ) ) |
41 |
|
fveq1 |
|- ( f = F -> ( f ` ( x .x. y ) ) = ( F ` ( x .x. y ) ) ) |
42 |
|
fveq1 |
|- ( f = F -> ( f ` y ) = ( F ` y ) ) |
43 |
42
|
oveq2d |
|- ( f = F -> ( x .X. ( f ` y ) ) = ( x .X. ( F ` y ) ) ) |
44 |
41 43
|
eqeq12d |
|- ( f = F -> ( ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) <-> ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
45 |
44
|
2ralbidv |
|- ( f = F -> ( A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) <-> A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
46 |
45
|
anbi2d |
|- ( f = F -> ( ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) <-> ( L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
47 |
46
|
elrab |
|- ( F e. { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } <-> ( F e. ( S GrpHom T ) /\ ( L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
48 |
|
3anass |
|- ( ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) <-> ( F e. ( S GrpHom T ) /\ ( L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
49 |
47 48
|
bitr4i |
|- ( F e. { f e. ( S GrpHom T ) | ( L = K /\ A. x e. B A. y e. E ( f ` ( x .x. y ) ) = ( x .X. ( f ` y ) ) ) } <-> ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) |
50 |
40 49
|
bitrdi |
|- ( ( S e. LMod /\ T e. LMod ) -> ( F e. ( S LMHom T ) <-> ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |
51 |
8 50
|
biadanii |
|- ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ L = K /\ A. x e. B A. y e. E ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) |