| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islmhmd.x |  |-  X = ( Base ` S ) | 
						
							| 2 |  | islmhmd.a |  |-  .x. = ( .s ` S ) | 
						
							| 3 |  | islmhmd.b |  |-  .X. = ( .s ` T ) | 
						
							| 4 |  | islmhmd.k |  |-  K = ( Scalar ` S ) | 
						
							| 5 |  | islmhmd.j |  |-  J = ( Scalar ` T ) | 
						
							| 6 |  | islmhmd.n |  |-  N = ( Base ` K ) | 
						
							| 7 |  | islmhmd.s |  |-  ( ph -> S e. LMod ) | 
						
							| 8 |  | islmhmd.t |  |-  ( ph -> T e. LMod ) | 
						
							| 9 |  | islmhmd.c |  |-  ( ph -> J = K ) | 
						
							| 10 |  | islmhmd.f |  |-  ( ph -> F e. ( S GrpHom T ) ) | 
						
							| 11 |  | islmhmd.l |  |-  ( ( ph /\ ( x e. N /\ y e. X ) ) -> ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) | 
						
							| 12 | 11 | ralrimivva |  |-  ( ph -> A. x e. N A. y e. X ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) | 
						
							| 13 | 10 9 12 | 3jca |  |-  ( ph -> ( F e. ( S GrpHom T ) /\ J = K /\ A. x e. N A. y e. X ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) | 
						
							| 14 | 4 5 6 1 2 3 | islmhm |  |-  ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ J = K /\ A. x e. N A. y e. X ( F ` ( x .x. y ) ) = ( x .X. ( F ` y ) ) ) ) ) | 
						
							| 15 | 7 8 13 14 | syl21anbrc |  |-  ( ph -> F e. ( S LMHom T ) ) |