Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
7 |
|
lmif.l |
|- L = ( LineG ` G ) |
8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
9 |
|
lmicl.1 |
|- ( ph -> A e. P ) |
10 |
|
islmib.b |
|- ( ph -> B e. P ) |
11 |
|
df-lmi |
|- lInvG = ( g e. _V |-> ( d e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) ) |
12 |
|
fveq2 |
|- ( g = G -> ( LineG ` g ) = ( LineG ` G ) ) |
13 |
12 7
|
eqtr4di |
|- ( g = G -> ( LineG ` g ) = L ) |
14 |
13
|
rneqd |
|- ( g = G -> ran ( LineG ` g ) = ran L ) |
15 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
16 |
15 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
17 |
|
fveq2 |
|- ( g = G -> ( midG ` g ) = ( midG ` G ) ) |
18 |
17
|
oveqd |
|- ( g = G -> ( a ( midG ` g ) b ) = ( a ( midG ` G ) b ) ) |
19 |
18
|
eleq1d |
|- ( g = G -> ( ( a ( midG ` g ) b ) e. d <-> ( a ( midG ` G ) b ) e. d ) ) |
20 |
|
eqidd |
|- ( g = G -> d = d ) |
21 |
|
fveq2 |
|- ( g = G -> ( perpG ` g ) = ( perpG ` G ) ) |
22 |
13
|
oveqd |
|- ( g = G -> ( a ( LineG ` g ) b ) = ( a L b ) ) |
23 |
20 21 22
|
breq123d |
|- ( g = G -> ( d ( perpG ` g ) ( a ( LineG ` g ) b ) <-> d ( perpG ` G ) ( a L b ) ) ) |
24 |
23
|
orbi1d |
|- ( g = G -> ( ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) <-> ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) |
25 |
19 24
|
anbi12d |
|- ( g = G -> ( ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) <-> ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
26 |
16 25
|
riotaeqbidv |
|- ( g = G -> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) = ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
27 |
16 26
|
mpteq12dv |
|- ( g = G -> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
28 |
14 27
|
mpteq12dv |
|- ( g = G -> ( d e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) = ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) ) |
29 |
4
|
elexd |
|- ( ph -> G e. _V ) |
30 |
7
|
fvexi |
|- L e. _V |
31 |
|
rnexg |
|- ( L e. _V -> ran L e. _V ) |
32 |
|
mptexg |
|- ( ran L e. _V -> ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) e. _V ) |
33 |
30 31 32
|
mp2b |
|- ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) e. _V |
34 |
33
|
a1i |
|- ( ph -> ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) e. _V ) |
35 |
11 28 29 34
|
fvmptd3 |
|- ( ph -> ( lInvG ` G ) = ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) ) |
36 |
|
eleq2 |
|- ( d = D -> ( ( a ( midG ` G ) b ) e. d <-> ( a ( midG ` G ) b ) e. D ) ) |
37 |
|
breq1 |
|- ( d = D -> ( d ( perpG ` G ) ( a L b ) <-> D ( perpG ` G ) ( a L b ) ) ) |
38 |
37
|
orbi1d |
|- ( d = D -> ( ( d ( perpG ` G ) ( a L b ) \/ a = b ) <-> ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) |
39 |
36 38
|
anbi12d |
|- ( d = D -> ( ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) <-> ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
40 |
39
|
riotabidv |
|- ( d = D -> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) = ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
41 |
40
|
mpteq2dv |
|- ( d = D -> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ d = D ) -> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
43 |
1
|
fvexi |
|- P e. _V |
44 |
43
|
mptex |
|- ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) e. _V |
45 |
44
|
a1i |
|- ( ph -> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) e. _V ) |
46 |
35 42 8 45
|
fvmptd |
|- ( ph -> ( ( lInvG ` G ) ` D ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
47 |
6 46
|
syl5eq |
|- ( ph -> M = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
48 |
|
oveq1 |
|- ( a = A -> ( a ( midG ` G ) b ) = ( A ( midG ` G ) b ) ) |
49 |
48
|
eleq1d |
|- ( a = A -> ( ( a ( midG ` G ) b ) e. D <-> ( A ( midG ` G ) b ) e. D ) ) |
50 |
|
oveq1 |
|- ( a = A -> ( a L b ) = ( A L b ) ) |
51 |
50
|
breq2d |
|- ( a = A -> ( D ( perpG ` G ) ( a L b ) <-> D ( perpG ` G ) ( A L b ) ) ) |
52 |
|
eqeq1 |
|- ( a = A -> ( a = b <-> A = b ) ) |
53 |
51 52
|
orbi12d |
|- ( a = A -> ( ( D ( perpG ` G ) ( a L b ) \/ a = b ) <-> ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) |
54 |
49 53
|
anbi12d |
|- ( a = A -> ( ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) <-> ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) ) |
55 |
54
|
riotabidv |
|- ( a = A -> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) = ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) ) |
56 |
55
|
adantl |
|- ( ( ph /\ a = A ) -> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) = ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) ) |
57 |
1 2 3 4 5 7 8 9
|
lmieu |
|- ( ph -> E! b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) |
58 |
|
riotacl |
|- ( E! b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) -> ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) e. P ) |
59 |
57 58
|
syl |
|- ( ph -> ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) e. P ) |
60 |
47 56 9 59
|
fvmptd |
|- ( ph -> ( M ` A ) = ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) ) |
61 |
60
|
eqeq2d |
|- ( ph -> ( B = ( M ` A ) <-> B = ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) ) ) |
62 |
|
oveq2 |
|- ( b = B -> ( A ( midG ` G ) b ) = ( A ( midG ` G ) B ) ) |
63 |
62
|
eleq1d |
|- ( b = B -> ( ( A ( midG ` G ) b ) e. D <-> ( A ( midG ` G ) B ) e. D ) ) |
64 |
|
oveq2 |
|- ( b = B -> ( A L b ) = ( A L B ) ) |
65 |
64
|
breq2d |
|- ( b = B -> ( D ( perpG ` G ) ( A L b ) <-> D ( perpG ` G ) ( A L B ) ) ) |
66 |
|
eqeq2 |
|- ( b = B -> ( A = b <-> A = B ) ) |
67 |
65 66
|
orbi12d |
|- ( b = B -> ( ( D ( perpG ` G ) ( A L b ) \/ A = b ) <-> ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) ) |
68 |
63 67
|
anbi12d |
|- ( b = B -> ( ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) <-> ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) ) ) |
69 |
68
|
riota2 |
|- ( ( B e. P /\ E! b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) -> ( ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) <-> ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) = B ) ) |
70 |
10 57 69
|
syl2anc |
|- ( ph -> ( ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) <-> ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) = B ) ) |
71 |
|
eqcom |
|- ( B = ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) <-> ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) = B ) |
72 |
70 71
|
bitr4di |
|- ( ph -> ( ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) <-> B = ( iota_ b e. P ( ( A ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( A L b ) \/ A = b ) ) ) ) ) |
73 |
61 72
|
bitr4d |
|- ( ph -> ( B = ( M ` A ) <-> ( ( A ( midG ` G ) B ) e. D /\ ( D ( perpG ` G ) ( A L B ) \/ A = B ) ) ) ) |