| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							islmod.v | 
							 |-  V = ( Base ` W )  | 
						
						
							| 2 | 
							
								
							 | 
							islmod.a | 
							 |-  .+ = ( +g ` W )  | 
						
						
							| 3 | 
							
								
							 | 
							islmod.s | 
							 |-  .x. = ( .s ` W )  | 
						
						
							| 4 | 
							
								
							 | 
							islmod.f | 
							 |-  F = ( Scalar ` W )  | 
						
						
							| 5 | 
							
								
							 | 
							islmod.k | 
							 |-  K = ( Base ` F )  | 
						
						
							| 6 | 
							
								
							 | 
							islmod.p | 
							 |-  .+^ = ( +g ` F )  | 
						
						
							| 7 | 
							
								
							 | 
							islmod.t | 
							 |-  .X. = ( .r ` F )  | 
						
						
							| 8 | 
							
								
							 | 
							islmod.u | 
							 |-  .1. = ( 1r ` F )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = W -> ( Base ` g ) = ( Base ` W ) )  | 
						
						
							| 10 | 
							
								9 1
							 | 
							eqtr4di | 
							 |-  ( g = W -> ( Base ` g ) = V )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = W -> ( +g ` g ) = ( +g ` W ) )  | 
						
						
							| 12 | 
							
								11 2
							 | 
							eqtr4di | 
							 |-  ( g = W -> ( +g ` g ) = .+ )  | 
						
						
							| 13 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = W -> ( Scalar ` g ) = ( Scalar ` W ) )  | 
						
						
							| 14 | 
							
								13 4
							 | 
							eqtr4di | 
							 |-  ( g = W -> ( Scalar ` g ) = F )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							 |-  ( g = W -> ( .s ` g ) = ( .s ` W ) )  | 
						
						
							| 16 | 
							
								15 3
							 | 
							eqtr4di | 
							 |-  ( g = W -> ( .s ` g ) = .x. )  | 
						
						
							| 17 | 
							
								16
							 | 
							sbceq1d | 
							 |-  ( g = W -> ( [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							sbceqbid | 
							 |-  ( g = W -> ( [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							sbceqbid | 
							 |-  ( g = W -> ( [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							sbceqbid | 
							 |-  ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) )  | 
						
						
							| 21 | 
							
								1
							 | 
							fvexi | 
							 |-  V e. _V  | 
						
						
							| 22 | 
							
								2
							 | 
							fvexi | 
							 |-  .+ e. _V  | 
						
						
							| 23 | 
							
								4
							 | 
							fvexi | 
							 |-  F e. _V  | 
						
						
							| 24 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> f = F )  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( Base ` f ) = ( Base ` F ) )  | 
						
						
							| 26 | 
							
								25 5
							 | 
							eqtr4di | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( Base ` f ) = K )  | 
						
						
							| 27 | 
							
								24
							 | 
							fveq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( +g ` f ) = ( +g ` F ) )  | 
						
						
							| 28 | 
							
								27 6
							 | 
							eqtr4di | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( +g ` f ) = .+^ )  | 
						
						
							| 29 | 
							
								24
							 | 
							fveq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( .r ` f ) = ( .r ` F ) )  | 
						
						
							| 30 | 
							
								29 7
							 | 
							eqtr4di | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( .r ` f ) = .X. )  | 
						
						
							| 31 | 
							
								30
							 | 
							sbceq1d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) )  | 
						
						
							| 32 | 
							
								7
							 | 
							fvexi | 
							 |-  .X. e. _V  | 
						
						
							| 33 | 
							
								
							 | 
							oveq | 
							 |-  ( t = .X. -> ( q t r ) = ( q .X. r ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq1d | 
							 |-  ( t = .X. -> ( ( q t r ) s w ) = ( ( q .X. r ) s w ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							eqeq1d | 
							 |-  ( t = .X. -> ( ( ( q t r ) s w ) = ( q s ( r s w ) ) <-> ( ( q .X. r ) s w ) = ( q s ( r s w ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							anbi1d | 
							 |-  ( t = .X. -> ( ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) <-> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							anbi2d | 
							 |-  ( t = .X. -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							2ralbidv | 
							 |-  ( t = .X. -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							2ralbidv | 
							 |-  ( t = .X. -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							anbi2d | 
							 |-  ( t = .X. -> ( ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							sbcie | 
							 |-  ( [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) )  | 
						
						
							| 42 | 
							
								24
							 | 
							eleq1d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( f e. Ring <-> F e. Ring ) )  | 
						
						
							| 43 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> v = V )  | 
						
						
							| 44 | 
							
								43
							 | 
							eleq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s w ) e. v <-> ( r s w ) e. V ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> a = .+ )  | 
						
						
							| 46 | 
							
								45
							 | 
							oveqd | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( w a x ) = ( w .+ x ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( r s ( w a x ) ) = ( r s ( w .+ x ) ) )  | 
						
						
							| 48 | 
							
								45
							 | 
							oveqd | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s w ) a ( r s x ) ) = ( ( r s w ) .+ ( r s x ) ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							eqeq12d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) <-> ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) ) )  | 
						
						
							| 50 | 
							
								45
							 | 
							oveqd | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( q s w ) a ( r s w ) ) = ( ( q s w ) .+ ( r s w ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							eqeq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) <-> ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) )  | 
						
						
							| 52 | 
							
								44 49 51
							 | 
							3anbi123d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) <-> ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) ) )  | 
						
						
							| 53 | 
							
								24
							 | 
							fveq2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( 1r ` f ) = ( 1r ` F ) )  | 
						
						
							| 54 | 
							
								53 8
							 | 
							eqtr4di | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( 1r ` f ) = .1. )  | 
						
						
							| 55 | 
							
								54
							 | 
							oveq1d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( 1r ` f ) s w ) = ( .1. s w ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							eqeq1d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( 1r ` f ) s w ) = w <-> ( .1. s w ) = w ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							anbi2d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) <-> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) )  | 
						
						
							| 58 | 
							
								52 57
							 | 
							anbi12d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) )  | 
						
						
							| 59 | 
							
								43 58
							 | 
							raleqbidv | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) )  | 
						
						
							| 60 | 
							
								43 59
							 | 
							raleqbidv | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							2ralbidv | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) )  | 
						
						
							| 62 | 
							
								42 61
							 | 
							anbi12d | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) )  | 
						
						
							| 63 | 
							
								41 62
							 | 
							bitrid | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) )  | 
						
						
							| 64 | 
							
								31 63
							 | 
							bitrd | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) )  | 
						
						
							| 65 | 
							
								28 64
							 | 
							sbceqbid | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) )  | 
						
						
							| 66 | 
							
								26 65
							 | 
							sbceqbid | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							sbcbidv | 
							 |-  ( ( v = V /\ a = .+ /\ f = F ) -> ( [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) )  | 
						
						
							| 68 | 
							
								21 22 23 67
							 | 
							sbc3ie | 
							 |-  ( [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) )  | 
						
						
							| 69 | 
							
								3
							 | 
							fvexi | 
							 |-  .x. e. _V  | 
						
						
							| 70 | 
							
								5
							 | 
							fvexi | 
							 |-  K e. _V  | 
						
						
							| 71 | 
							
								6
							 | 
							fvexi | 
							 |-  .+^ e. _V  | 
						
						
							| 72 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> k = K )  | 
						
						
							| 73 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> s = .x. )  | 
						
						
							| 74 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s w ) = ( r .x. w ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							eleq1d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s w ) e. V <-> ( r .x. w ) e. V ) )  | 
						
						
							| 76 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s ( w .+ x ) ) = ( r .x. ( w .+ x ) ) )  | 
						
						
							| 77 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s x ) = ( r .x. x ) )  | 
						
						
							| 78 | 
							
								74 77
							 | 
							oveq12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s w ) .+ ( r s x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) )  | 
						
						
							| 79 | 
							
								76 78
							 | 
							eqeq12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) <-> ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> p = .+^ )  | 
						
						
							| 81 | 
							
								80
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q p r ) = ( q .+^ r ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							oveq1d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q p r ) s w ) = ( ( q .+^ r ) s w ) )  | 
						
						
							| 83 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q .+^ r ) s w ) = ( ( q .+^ r ) .x. w ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							eqtrd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q p r ) s w ) = ( ( q .+^ r ) .x. w ) )  | 
						
						
							| 85 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s w ) = ( q .x. w ) )  | 
						
						
							| 86 | 
							
								85 74
							 | 
							oveq12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q s w ) .+ ( r s w ) ) = ( ( q .x. w ) .+ ( r .x. w ) ) )  | 
						
						
							| 87 | 
							
								84 86
							 | 
							eqeq12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) <-> ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) )  | 
						
						
							| 88 | 
							
								75 79 87
							 | 
							3anbi123d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) <-> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) )  | 
						
						
							| 89 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q .X. r ) s w ) = ( ( q .X. r ) .x. w ) )  | 
						
						
							| 90 | 
							
								74
							 | 
							oveq2d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r s w ) ) = ( q s ( r .x. w ) ) )  | 
						
						
							| 91 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r .x. w ) ) = ( q .x. ( r .x. w ) ) )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							eqtrd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r s w ) ) = ( q .x. ( r .x. w ) ) )  | 
						
						
							| 93 | 
							
								89 92
							 | 
							eqeq12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) <-> ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) ) )  | 
						
						
							| 94 | 
							
								73
							 | 
							oveqd | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( .1. s w ) = ( .1. .x. w ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							eqeq1d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( .1. s w ) = w <-> ( .1. .x. w ) = w ) )  | 
						
						
							| 96 | 
							
								93 95
							 | 
							anbi12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) <-> ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) )  | 
						
						
							| 97 | 
							
								88 96
							 | 
							anbi12d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							2ralbidv | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  | 
						
						
							| 99 | 
							
								72 98
							 | 
							raleqbidv | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  | 
						
						
							| 100 | 
							
								72 99
							 | 
							raleqbidv | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							anbi2d | 
							 |-  ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) )  | 
						
						
							| 102 | 
							
								69 70 71 101
							 | 
							sbc3ie | 
							 |-  ( [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  | 
						
						
							| 103 | 
							
								68 102
							 | 
							bitri | 
							 |-  ( [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  | 
						
						
							| 104 | 
							
								20 103
							 | 
							bitrdi | 
							 |-  ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							df-lmod | 
							 |-  LMod = { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } | 
						
						
							| 106 | 
							
								104 105
							 | 
							elrab2 | 
							 |-  ( W e. LMod <-> ( W e. Grp /\ ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							3anass | 
							 |-  ( ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) <-> ( W e. Grp /\ ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) )  | 
						
						
							| 108 | 
							
								106 107
							 | 
							bitr4i | 
							 |-  ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) )  |