| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmod.v |
|- V = ( Base ` W ) |
| 2 |
|
islmod.a |
|- .+ = ( +g ` W ) |
| 3 |
|
islmod.s |
|- .x. = ( .s ` W ) |
| 4 |
|
islmod.f |
|- F = ( Scalar ` W ) |
| 5 |
|
islmod.k |
|- K = ( Base ` F ) |
| 6 |
|
islmod.p |
|- .+^ = ( +g ` F ) |
| 7 |
|
islmod.t |
|- .X. = ( .r ` F ) |
| 8 |
|
islmod.u |
|- .1. = ( 1r ` F ) |
| 9 |
|
fveq2 |
|- ( g = W -> ( Base ` g ) = ( Base ` W ) ) |
| 10 |
9 1
|
eqtr4di |
|- ( g = W -> ( Base ` g ) = V ) |
| 11 |
|
fveq2 |
|- ( g = W -> ( +g ` g ) = ( +g ` W ) ) |
| 12 |
11 2
|
eqtr4di |
|- ( g = W -> ( +g ` g ) = .+ ) |
| 13 |
|
fveq2 |
|- ( g = W -> ( Scalar ` g ) = ( Scalar ` W ) ) |
| 14 |
13 4
|
eqtr4di |
|- ( g = W -> ( Scalar ` g ) = F ) |
| 15 |
|
fveq2 |
|- ( g = W -> ( .s ` g ) = ( .s ` W ) ) |
| 16 |
15 3
|
eqtr4di |
|- ( g = W -> ( .s ` g ) = .x. ) |
| 17 |
16
|
sbceq1d |
|- ( g = W -> ( [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 18 |
14 17
|
sbceqbid |
|- ( g = W -> ( [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 19 |
12 18
|
sbceqbid |
|- ( g = W -> ( [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 20 |
10 19
|
sbceqbid |
|- ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 21 |
1
|
fvexi |
|- V e. _V |
| 22 |
2
|
fvexi |
|- .+ e. _V |
| 23 |
4
|
fvexi |
|- F e. _V |
| 24 |
|
simp3 |
|- ( ( v = V /\ a = .+ /\ f = F ) -> f = F ) |
| 25 |
24
|
fveq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( Base ` f ) = ( Base ` F ) ) |
| 26 |
25 5
|
eqtr4di |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( Base ` f ) = K ) |
| 27 |
24
|
fveq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( +g ` f ) = ( +g ` F ) ) |
| 28 |
27 6
|
eqtr4di |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( +g ` f ) = .+^ ) |
| 29 |
24
|
fveq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( .r ` f ) = ( .r ` F ) ) |
| 30 |
29 7
|
eqtr4di |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( .r ` f ) = .X. ) |
| 31 |
30
|
sbceq1d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 32 |
7
|
fvexi |
|- .X. e. _V |
| 33 |
|
oveq |
|- ( t = .X. -> ( q t r ) = ( q .X. r ) ) |
| 34 |
33
|
oveq1d |
|- ( t = .X. -> ( ( q t r ) s w ) = ( ( q .X. r ) s w ) ) |
| 35 |
34
|
eqeq1d |
|- ( t = .X. -> ( ( ( q t r ) s w ) = ( q s ( r s w ) ) <-> ( ( q .X. r ) s w ) = ( q s ( r s w ) ) ) ) |
| 36 |
35
|
anbi1d |
|- ( t = .X. -> ( ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) <-> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) |
| 37 |
36
|
anbi2d |
|- ( t = .X. -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 38 |
37
|
2ralbidv |
|- ( t = .X. -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 39 |
38
|
2ralbidv |
|- ( t = .X. -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 40 |
39
|
anbi2d |
|- ( t = .X. -> ( ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) ) |
| 41 |
32 40
|
sbcie |
|- ( [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) ) |
| 42 |
24
|
eleq1d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( f e. Ring <-> F e. Ring ) ) |
| 43 |
|
simp1 |
|- ( ( v = V /\ a = .+ /\ f = F ) -> v = V ) |
| 44 |
43
|
eleq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s w ) e. v <-> ( r s w ) e. V ) ) |
| 45 |
|
simp2 |
|- ( ( v = V /\ a = .+ /\ f = F ) -> a = .+ ) |
| 46 |
45
|
oveqd |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( w a x ) = ( w .+ x ) ) |
| 47 |
46
|
oveq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( r s ( w a x ) ) = ( r s ( w .+ x ) ) ) |
| 48 |
45
|
oveqd |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s w ) a ( r s x ) ) = ( ( r s w ) .+ ( r s x ) ) ) |
| 49 |
47 48
|
eqeq12d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) <-> ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) ) ) |
| 50 |
45
|
oveqd |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( q s w ) a ( r s w ) ) = ( ( q s w ) .+ ( r s w ) ) ) |
| 51 |
50
|
eqeq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) <-> ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) ) |
| 52 |
44 49 51
|
3anbi123d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) <-> ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) ) ) |
| 53 |
24
|
fveq2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( 1r ` f ) = ( 1r ` F ) ) |
| 54 |
53 8
|
eqtr4di |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( 1r ` f ) = .1. ) |
| 55 |
54
|
oveq1d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( 1r ` f ) s w ) = ( .1. s w ) ) |
| 56 |
55
|
eqeq1d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( 1r ` f ) s w ) = w <-> ( .1. s w ) = w ) ) |
| 57 |
56
|
anbi2d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) <-> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) |
| 58 |
52 57
|
anbi12d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 59 |
43 58
|
raleqbidv |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 60 |
43 59
|
raleqbidv |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 61 |
60
|
2ralbidv |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) <-> A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 62 |
42 61
|
anbi12d |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 63 |
41 62
|
bitrid |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. .X. / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 64 |
31 63
|
bitrd |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 65 |
28 64
|
sbceqbid |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 66 |
26 65
|
sbceqbid |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 67 |
66
|
sbcbidv |
|- ( ( v = V /\ a = .+ /\ f = F ) -> ( [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) ) |
| 68 |
21 22 23 67
|
sbc3ie |
|- ( [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) ) |
| 69 |
3
|
fvexi |
|- .x. e. _V |
| 70 |
5
|
fvexi |
|- K e. _V |
| 71 |
6
|
fvexi |
|- .+^ e. _V |
| 72 |
|
simp2 |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> k = K ) |
| 73 |
|
simp1 |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> s = .x. ) |
| 74 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s w ) = ( r .x. w ) ) |
| 75 |
74
|
eleq1d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s w ) e. V <-> ( r .x. w ) e. V ) ) |
| 76 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s ( w .+ x ) ) = ( r .x. ( w .+ x ) ) ) |
| 77 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( r s x ) = ( r .x. x ) ) |
| 78 |
74 77
|
oveq12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s w ) .+ ( r s x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) |
| 79 |
76 78
|
eqeq12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) <-> ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) ) |
| 80 |
|
simp3 |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> p = .+^ ) |
| 81 |
80
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q p r ) = ( q .+^ r ) ) |
| 82 |
81
|
oveq1d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q p r ) s w ) = ( ( q .+^ r ) s w ) ) |
| 83 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q .+^ r ) s w ) = ( ( q .+^ r ) .x. w ) ) |
| 84 |
82 83
|
eqtrd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q p r ) s w ) = ( ( q .+^ r ) .x. w ) ) |
| 85 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s w ) = ( q .x. w ) ) |
| 86 |
85 74
|
oveq12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q s w ) .+ ( r s w ) ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) |
| 87 |
84 86
|
eqeq12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) <-> ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) |
| 88 |
75 79 87
|
3anbi123d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) <-> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) ) |
| 89 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( q .X. r ) s w ) = ( ( q .X. r ) .x. w ) ) |
| 90 |
74
|
oveq2d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r s w ) ) = ( q s ( r .x. w ) ) ) |
| 91 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r .x. w ) ) = ( q .x. ( r .x. w ) ) ) |
| 92 |
90 91
|
eqtrd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( q s ( r s w ) ) = ( q .x. ( r .x. w ) ) ) |
| 93 |
89 92
|
eqeq12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) <-> ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) ) ) |
| 94 |
73
|
oveqd |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( .1. s w ) = ( .1. .x. w ) ) |
| 95 |
94
|
eqeq1d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( .1. s w ) = w <-> ( .1. .x. w ) = w ) ) |
| 96 |
93 95
|
anbi12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) <-> ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
| 97 |
88 96
|
anbi12d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 98 |
97
|
2ralbidv |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 99 |
72 98
|
raleqbidv |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 100 |
72 99
|
raleqbidv |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) <-> A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 101 |
100
|
anbi2d |
|- ( ( s = .x. /\ k = K /\ p = .+^ ) -> ( ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 102 |
69 70 71 101
|
sbc3ie |
|- ( [. .x. / s ]. [. K / k ]. [. .+^ / p ]. ( F e. Ring /\ A. q e. k A. r e. k A. x e. V A. w e. V ( ( ( r s w ) e. V /\ ( r s ( w .+ x ) ) = ( ( r s w ) .+ ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) .+ ( r s w ) ) ) /\ ( ( ( q .X. r ) s w ) = ( q s ( r s w ) ) /\ ( .1. s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 103 |
68 102
|
bitri |
|- ( [. V / v ]. [. .+ / a ]. [. F / f ]. [. .x. / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |
| 104 |
20 103
|
bitrdi |
|- ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) <-> ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 105 |
|
df-lmod |
|- LMod = { g e. Grp | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( Scalar ` g ) / f ]. [. ( .s ` g ) / s ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. Ring /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w ) ) ) } |
| 106 |
104 105
|
elrab2 |
|- ( W e. LMod <-> ( W e. Grp /\ ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 107 |
|
3anass |
|- ( ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) <-> ( W e. Grp /\ ( F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) ) |
| 108 |
106 107
|
bitr4i |
|- ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) ) |