Step |
Hyp |
Ref |
Expression |
1 |
|
islmodd.v |
|- ( ph -> V = ( Base ` W ) ) |
2 |
|
islmodd.a |
|- ( ph -> .+ = ( +g ` W ) ) |
3 |
|
islmodd.f |
|- ( ph -> F = ( Scalar ` W ) ) |
4 |
|
islmodd.s |
|- ( ph -> .x. = ( .s ` W ) ) |
5 |
|
islmodd.b |
|- ( ph -> B = ( Base ` F ) ) |
6 |
|
islmodd.p |
|- ( ph -> .+^ = ( +g ` F ) ) |
7 |
|
islmodd.t |
|- ( ph -> .X. = ( .r ` F ) ) |
8 |
|
islmodd.u |
|- ( ph -> .1. = ( 1r ` F ) ) |
9 |
|
islmodd.r |
|- ( ph -> F e. Ring ) |
10 |
|
islmodd.l |
|- ( ph -> W e. Grp ) |
11 |
|
islmodd.w |
|- ( ( ph /\ x e. B /\ y e. V ) -> ( x .x. y ) e. V ) |
12 |
|
islmodd.c |
|- ( ( ph /\ ( x e. B /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
13 |
|
islmodd.d |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. V ) ) -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
14 |
|
islmodd.e |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. V ) ) -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
15 |
|
islmodd.g |
|- ( ( ph /\ x e. V ) -> ( .1. .x. x ) = x ) |
16 |
3 9
|
eqeltrrd |
|- ( ph -> ( Scalar ` W ) e. Ring ) |
17 |
11
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. V ) ) -> ( x .x. y ) e. V ) |
18 |
17
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. V ( x .x. y ) e. V ) |
19 |
|
oveq1 |
|- ( x = r -> ( x .x. y ) = ( r .x. y ) ) |
20 |
19
|
eleq1d |
|- ( x = r -> ( ( x .x. y ) e. V <-> ( r .x. y ) e. V ) ) |
21 |
|
oveq2 |
|- ( y = w -> ( r .x. y ) = ( r .x. w ) ) |
22 |
21
|
eleq1d |
|- ( y = w -> ( ( r .x. y ) e. V <-> ( r .x. w ) e. V ) ) |
23 |
20 22
|
rspc2v |
|- ( ( r e. B /\ w e. V ) -> ( A. x e. B A. y e. V ( x .x. y ) e. V -> ( r .x. w ) e. V ) ) |
24 |
23
|
ad2ant2l |
|- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> ( A. x e. B A. y e. V ( x .x. y ) e. V -> ( r .x. w ) e. V ) ) |
25 |
18 24
|
mpan9 |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( r .x. w ) e. V ) |
26 |
12
|
ralrimivvva |
|- ( ph -> A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
27 |
|
oveq1 |
|- ( x = r -> ( x .x. ( y .+ z ) ) = ( r .x. ( y .+ z ) ) ) |
28 |
|
oveq1 |
|- ( x = r -> ( x .x. z ) = ( r .x. z ) ) |
29 |
19 28
|
oveq12d |
|- ( x = r -> ( ( x .x. y ) .+ ( x .x. z ) ) = ( ( r .x. y ) .+ ( r .x. z ) ) ) |
30 |
27 29
|
eqeq12d |
|- ( x = r -> ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) <-> ( r .x. ( y .+ z ) ) = ( ( r .x. y ) .+ ( r .x. z ) ) ) ) |
31 |
|
oveq1 |
|- ( y = w -> ( y .+ z ) = ( w .+ z ) ) |
32 |
31
|
oveq2d |
|- ( y = w -> ( r .x. ( y .+ z ) ) = ( r .x. ( w .+ z ) ) ) |
33 |
21
|
oveq1d |
|- ( y = w -> ( ( r .x. y ) .+ ( r .x. z ) ) = ( ( r .x. w ) .+ ( r .x. z ) ) ) |
34 |
32 33
|
eqeq12d |
|- ( y = w -> ( ( r .x. ( y .+ z ) ) = ( ( r .x. y ) .+ ( r .x. z ) ) <-> ( r .x. ( w .+ z ) ) = ( ( r .x. w ) .+ ( r .x. z ) ) ) ) |
35 |
|
oveq2 |
|- ( z = u -> ( w .+ z ) = ( w .+ u ) ) |
36 |
35
|
oveq2d |
|- ( z = u -> ( r .x. ( w .+ z ) ) = ( r .x. ( w .+ u ) ) ) |
37 |
|
oveq2 |
|- ( z = u -> ( r .x. z ) = ( r .x. u ) ) |
38 |
37
|
oveq2d |
|- ( z = u -> ( ( r .x. w ) .+ ( r .x. z ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) |
39 |
36 38
|
eqeq12d |
|- ( z = u -> ( ( r .x. ( w .+ z ) ) = ( ( r .x. w ) .+ ( r .x. z ) ) <-> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
40 |
30 34 39
|
rspc3v |
|- ( ( r e. B /\ w e. V /\ u e. V ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
41 |
40
|
3com23 |
|- ( ( r e. B /\ u e. V /\ w e. V ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
42 |
41
|
3expb |
|- ( ( r e. B /\ ( u e. V /\ w e. V ) ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
43 |
42
|
adantll |
|- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> ( A. x e. B A. y e. V A. z e. V ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) ) |
44 |
26 43
|
mpan9 |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) ) |
45 |
|
simpll |
|- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> x e. B ) |
46 |
13
|
3exp2 |
|- ( ph -> ( x e. B -> ( y e. B -> ( z e. V -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) ) |
47 |
46
|
imp43 |
|- ( ( ( ph /\ x e. B ) /\ ( y e. B /\ z e. V ) ) -> ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
48 |
47
|
ralrimivva |
|- ( ( ph /\ x e. B ) -> A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
49 |
45 48
|
sylan2 |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
50 |
|
simprlr |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> r e. B ) |
51 |
|
simprrr |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> w e. V ) |
52 |
|
oveq2 |
|- ( y = r -> ( x .+^ y ) = ( x .+^ r ) ) |
53 |
52
|
oveq1d |
|- ( y = r -> ( ( x .+^ y ) .x. z ) = ( ( x .+^ r ) .x. z ) ) |
54 |
|
oveq1 |
|- ( y = r -> ( y .x. z ) = ( r .x. z ) ) |
55 |
54
|
oveq2d |
|- ( y = r -> ( ( x .x. z ) .+ ( y .x. z ) ) = ( ( x .x. z ) .+ ( r .x. z ) ) ) |
56 |
53 55
|
eqeq12d |
|- ( y = r -> ( ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) <-> ( ( x .+^ r ) .x. z ) = ( ( x .x. z ) .+ ( r .x. z ) ) ) ) |
57 |
|
oveq2 |
|- ( z = w -> ( ( x .+^ r ) .x. z ) = ( ( x .+^ r ) .x. w ) ) |
58 |
|
oveq2 |
|- ( z = w -> ( x .x. z ) = ( x .x. w ) ) |
59 |
|
oveq2 |
|- ( z = w -> ( r .x. z ) = ( r .x. w ) ) |
60 |
58 59
|
oveq12d |
|- ( z = w -> ( ( x .x. z ) .+ ( r .x. z ) ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) |
61 |
57 60
|
eqeq12d |
|- ( z = w -> ( ( ( x .+^ r ) .x. z ) = ( ( x .x. z ) .+ ( r .x. z ) ) <-> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
62 |
56 61
|
rspc2v |
|- ( ( r e. B /\ w e. V ) -> ( A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) -> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
63 |
50 51 62
|
syl2anc |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( A. y e. B A. z e. V ( ( x .+^ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) -> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
64 |
49 63
|
mpd |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) |
65 |
25 44 64
|
3jca |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) ) |
66 |
14
|
3exp2 |
|- ( ph -> ( x e. B -> ( y e. B -> ( z e. V -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) ) ) ) |
67 |
66
|
imp43 |
|- ( ( ( ph /\ x e. B ) /\ ( y e. B /\ z e. V ) ) -> ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
68 |
67
|
ralrimivva |
|- ( ( ph /\ x e. B ) -> A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
69 |
45 68
|
sylan2 |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
70 |
|
oveq2 |
|- ( y = r -> ( x .X. y ) = ( x .X. r ) ) |
71 |
70
|
oveq1d |
|- ( y = r -> ( ( x .X. y ) .x. z ) = ( ( x .X. r ) .x. z ) ) |
72 |
54
|
oveq2d |
|- ( y = r -> ( x .x. ( y .x. z ) ) = ( x .x. ( r .x. z ) ) ) |
73 |
71 72
|
eqeq12d |
|- ( y = r -> ( ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) <-> ( ( x .X. r ) .x. z ) = ( x .x. ( r .x. z ) ) ) ) |
74 |
|
oveq2 |
|- ( z = w -> ( ( x .X. r ) .x. z ) = ( ( x .X. r ) .x. w ) ) |
75 |
59
|
oveq2d |
|- ( z = w -> ( x .x. ( r .x. z ) ) = ( x .x. ( r .x. w ) ) ) |
76 |
74 75
|
eqeq12d |
|- ( z = w -> ( ( ( x .X. r ) .x. z ) = ( x .x. ( r .x. z ) ) <-> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) ) |
77 |
73 76
|
rspc2v |
|- ( ( r e. B /\ w e. V ) -> ( A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) -> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) ) |
78 |
50 51 77
|
syl2anc |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( A. y e. B A. z e. V ( ( x .X. y ) .x. z ) = ( x .x. ( y .x. z ) ) -> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) ) |
79 |
69 78
|
mpd |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) ) |
80 |
15
|
ralrimiva |
|- ( ph -> A. x e. V ( .1. .x. x ) = x ) |
81 |
|
oveq2 |
|- ( x = w -> ( .1. .x. x ) = ( .1. .x. w ) ) |
82 |
|
id |
|- ( x = w -> x = w ) |
83 |
81 82
|
eqeq12d |
|- ( x = w -> ( ( .1. .x. x ) = x <-> ( .1. .x. w ) = w ) ) |
84 |
83
|
rspcv |
|- ( w e. V -> ( A. x e. V ( .1. .x. x ) = x -> ( .1. .x. w ) = w ) ) |
85 |
84
|
ad2antll |
|- ( ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) -> ( A. x e. V ( .1. .x. x ) = x -> ( .1. .x. w ) = w ) ) |
86 |
80 85
|
mpan9 |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( .1. .x. w ) = w ) |
87 |
65 79 86
|
jca32 |
|- ( ( ph /\ ( ( x e. B /\ r e. B ) /\ ( u e. V /\ w e. V ) ) ) -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
88 |
87
|
anassrs |
|- ( ( ( ph /\ ( x e. B /\ r e. B ) ) /\ ( u e. V /\ w e. V ) ) -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
89 |
88
|
ralrimivva |
|- ( ( ph /\ ( x e. B /\ r e. B ) ) -> A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
90 |
89
|
ralrimivva |
|- ( ph -> A. x e. B A. r e. B A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) ) |
91 |
3
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
92 |
5 91
|
eqtrd |
|- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
93 |
4
|
oveqd |
|- ( ph -> ( r .x. w ) = ( r ( .s ` W ) w ) ) |
94 |
93 1
|
eleq12d |
|- ( ph -> ( ( r .x. w ) e. V <-> ( r ( .s ` W ) w ) e. ( Base ` W ) ) ) |
95 |
|
eqidd |
|- ( ph -> r = r ) |
96 |
2
|
oveqd |
|- ( ph -> ( w .+ u ) = ( w ( +g ` W ) u ) ) |
97 |
4 95 96
|
oveq123d |
|- ( ph -> ( r .x. ( w .+ u ) ) = ( r ( .s ` W ) ( w ( +g ` W ) u ) ) ) |
98 |
4
|
oveqd |
|- ( ph -> ( r .x. u ) = ( r ( .s ` W ) u ) ) |
99 |
2 93 98
|
oveq123d |
|- ( ph -> ( ( r .x. w ) .+ ( r .x. u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) ) |
100 |
97 99
|
eqeq12d |
|- ( ph -> ( ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) <-> ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) ) ) |
101 |
3
|
fveq2d |
|- ( ph -> ( +g ` F ) = ( +g ` ( Scalar ` W ) ) ) |
102 |
6 101
|
eqtrd |
|- ( ph -> .+^ = ( +g ` ( Scalar ` W ) ) ) |
103 |
102
|
oveqd |
|- ( ph -> ( x .+^ r ) = ( x ( +g ` ( Scalar ` W ) ) r ) ) |
104 |
|
eqidd |
|- ( ph -> w = w ) |
105 |
4 103 104
|
oveq123d |
|- ( ph -> ( ( x .+^ r ) .x. w ) = ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) ) |
106 |
4
|
oveqd |
|- ( ph -> ( x .x. w ) = ( x ( .s ` W ) w ) ) |
107 |
2 106 93
|
oveq123d |
|- ( ph -> ( ( x .x. w ) .+ ( r .x. w ) ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) |
108 |
105 107
|
eqeq12d |
|- ( ph -> ( ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) <-> ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) ) |
109 |
94 100 108
|
3anbi123d |
|- ( ph -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) <-> ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) ) ) |
110 |
3
|
fveq2d |
|- ( ph -> ( .r ` F ) = ( .r ` ( Scalar ` W ) ) ) |
111 |
7 110
|
eqtrd |
|- ( ph -> .X. = ( .r ` ( Scalar ` W ) ) ) |
112 |
111
|
oveqd |
|- ( ph -> ( x .X. r ) = ( x ( .r ` ( Scalar ` W ) ) r ) ) |
113 |
4 112 104
|
oveq123d |
|- ( ph -> ( ( x .X. r ) .x. w ) = ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) ) |
114 |
|
eqidd |
|- ( ph -> x = x ) |
115 |
4 114 93
|
oveq123d |
|- ( ph -> ( x .x. ( r .x. w ) ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) ) |
116 |
113 115
|
eqeq12d |
|- ( ph -> ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) <-> ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) ) ) |
117 |
3
|
fveq2d |
|- ( ph -> ( 1r ` F ) = ( 1r ` ( Scalar ` W ) ) ) |
118 |
8 117
|
eqtrd |
|- ( ph -> .1. = ( 1r ` ( Scalar ` W ) ) ) |
119 |
4 118 104
|
oveq123d |
|- ( ph -> ( .1. .x. w ) = ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) ) |
120 |
119
|
eqeq1d |
|- ( ph -> ( ( .1. .x. w ) = w <-> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) |
121 |
116 120
|
anbi12d |
|- ( ph -> ( ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) <-> ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
122 |
109 121
|
anbi12d |
|- ( ph -> ( ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
123 |
1 122
|
raleqbidv |
|- ( ph -> ( A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
124 |
1 123
|
raleqbidv |
|- ( ph -> ( A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
125 |
92 124
|
raleqbidv |
|- ( ph -> ( A. r e. B A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
126 |
92 125
|
raleqbidv |
|- ( ph -> ( A. x e. B A. r e. B A. u e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ u ) ) = ( ( r .x. w ) .+ ( r .x. u ) ) /\ ( ( x .+^ r ) .x. w ) = ( ( x .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( x .X. r ) .x. w ) = ( x .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w ) ) <-> A. x e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
127 |
90 126
|
mpbid |
|- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
128 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
129 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
130 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
131 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
132 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
133 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
134 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
135 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
136 |
128 129 130 131 132 133 134 135
|
islmod |
|- ( W e. LMod <-> ( W e. Grp /\ ( Scalar ` W ) e. Ring /\ A. x e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. u e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) u ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) u ) ) /\ ( ( x ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( x ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( x ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( x ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
137 |
10 16 127 136
|
syl3anbrc |
|- ( ph -> W e. LMod ) |