Step |
Hyp |
Ref |
Expression |
1 |
|
islmodfg.b |
|- B = ( Base ` W ) |
2 |
|
islmodfg.n |
|- N = ( LSpan ` W ) |
3 |
|
df-lfig |
|- LFinGen = { a e. LMod | ( Base ` a ) e. ( ( LSpan ` a ) " ( ~P ( Base ` a ) i^i Fin ) ) } |
4 |
3
|
eleq2i |
|- ( W e. LFinGen <-> W e. { a e. LMod | ( Base ` a ) e. ( ( LSpan ` a ) " ( ~P ( Base ` a ) i^i Fin ) ) } ) |
5 |
|
fveq2 |
|- ( a = W -> ( Base ` a ) = ( Base ` W ) ) |
6 |
|
fveq2 |
|- ( a = W -> ( LSpan ` a ) = ( LSpan ` W ) ) |
7 |
6 2
|
eqtr4di |
|- ( a = W -> ( LSpan ` a ) = N ) |
8 |
5
|
pweqd |
|- ( a = W -> ~P ( Base ` a ) = ~P ( Base ` W ) ) |
9 |
8
|
ineq1d |
|- ( a = W -> ( ~P ( Base ` a ) i^i Fin ) = ( ~P ( Base ` W ) i^i Fin ) ) |
10 |
7 9
|
imaeq12d |
|- ( a = W -> ( ( LSpan ` a ) " ( ~P ( Base ` a ) i^i Fin ) ) = ( N " ( ~P ( Base ` W ) i^i Fin ) ) ) |
11 |
5 10
|
eleq12d |
|- ( a = W -> ( ( Base ` a ) e. ( ( LSpan ` a ) " ( ~P ( Base ` a ) i^i Fin ) ) <-> ( Base ` W ) e. ( N " ( ~P ( Base ` W ) i^i Fin ) ) ) ) |
12 |
11
|
elrab3 |
|- ( W e. LMod -> ( W e. { a e. LMod | ( Base ` a ) e. ( ( LSpan ` a ) " ( ~P ( Base ` a ) i^i Fin ) ) } <-> ( Base ` W ) e. ( N " ( ~P ( Base ` W ) i^i Fin ) ) ) ) |
13 |
4 12
|
syl5bb |
|- ( W e. LMod -> ( W e. LFinGen <-> ( Base ` W ) e. ( N " ( ~P ( Base ` W ) i^i Fin ) ) ) ) |
14 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
15 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
16 |
14 15 2
|
lspf |
|- ( W e. LMod -> N : ~P ( Base ` W ) --> ( LSubSp ` W ) ) |
17 |
16
|
ffnd |
|- ( W e. LMod -> N Fn ~P ( Base ` W ) ) |
18 |
|
inss1 |
|- ( ~P ( Base ` W ) i^i Fin ) C_ ~P ( Base ` W ) |
19 |
|
fvelimab |
|- ( ( N Fn ~P ( Base ` W ) /\ ( ~P ( Base ` W ) i^i Fin ) C_ ~P ( Base ` W ) ) -> ( ( Base ` W ) e. ( N " ( ~P ( Base ` W ) i^i Fin ) ) <-> E. b e. ( ~P ( Base ` W ) i^i Fin ) ( N ` b ) = ( Base ` W ) ) ) |
20 |
17 18 19
|
sylancl |
|- ( W e. LMod -> ( ( Base ` W ) e. ( N " ( ~P ( Base ` W ) i^i Fin ) ) <-> E. b e. ( ~P ( Base ` W ) i^i Fin ) ( N ` b ) = ( Base ` W ) ) ) |
21 |
|
elin |
|- ( b e. ( ~P ( Base ` W ) i^i Fin ) <-> ( b e. ~P ( Base ` W ) /\ b e. Fin ) ) |
22 |
1
|
eqcomi |
|- ( Base ` W ) = B |
23 |
22
|
pweqi |
|- ~P ( Base ` W ) = ~P B |
24 |
23
|
eleq2i |
|- ( b e. ~P ( Base ` W ) <-> b e. ~P B ) |
25 |
24
|
anbi1i |
|- ( ( b e. ~P ( Base ` W ) /\ b e. Fin ) <-> ( b e. ~P B /\ b e. Fin ) ) |
26 |
21 25
|
bitri |
|- ( b e. ( ~P ( Base ` W ) i^i Fin ) <-> ( b e. ~P B /\ b e. Fin ) ) |
27 |
22
|
eqeq2i |
|- ( ( N ` b ) = ( Base ` W ) <-> ( N ` b ) = B ) |
28 |
26 27
|
anbi12i |
|- ( ( b e. ( ~P ( Base ` W ) i^i Fin ) /\ ( N ` b ) = ( Base ` W ) ) <-> ( ( b e. ~P B /\ b e. Fin ) /\ ( N ` b ) = B ) ) |
29 |
|
anass |
|- ( ( ( b e. ~P B /\ b e. Fin ) /\ ( N ` b ) = B ) <-> ( b e. ~P B /\ ( b e. Fin /\ ( N ` b ) = B ) ) ) |
30 |
28 29
|
bitri |
|- ( ( b e. ( ~P ( Base ` W ) i^i Fin ) /\ ( N ` b ) = ( Base ` W ) ) <-> ( b e. ~P B /\ ( b e. Fin /\ ( N ` b ) = B ) ) ) |
31 |
30
|
rexbii2 |
|- ( E. b e. ( ~P ( Base ` W ) i^i Fin ) ( N ` b ) = ( Base ` W ) <-> E. b e. ~P B ( b e. Fin /\ ( N ` b ) = B ) ) |
32 |
20 31
|
bitrdi |
|- ( W e. LMod -> ( ( Base ` W ) e. ( N " ( ~P ( Base ` W ) i^i Fin ) ) <-> E. b e. ~P B ( b e. Fin /\ ( N ` b ) = B ) ) ) |
33 |
13 32
|
bitrd |
|- ( W e. LMod -> ( W e. LFinGen <-> E. b e. ~P B ( b e. Fin /\ ( N ` b ) = B ) ) ) |