Step |
Hyp |
Ref |
Expression |
1 |
|
islnm.s |
|- S = ( LSubSp ` M ) |
2 |
|
fveq2 |
|- ( w = M -> ( LSubSp ` w ) = ( LSubSp ` M ) ) |
3 |
2 1
|
eqtr4di |
|- ( w = M -> ( LSubSp ` w ) = S ) |
4 |
|
oveq1 |
|- ( w = M -> ( w |`s i ) = ( M |`s i ) ) |
5 |
4
|
eleq1d |
|- ( w = M -> ( ( w |`s i ) e. LFinGen <-> ( M |`s i ) e. LFinGen ) ) |
6 |
3 5
|
raleqbidv |
|- ( w = M -> ( A. i e. ( LSubSp ` w ) ( w |`s i ) e. LFinGen <-> A. i e. S ( M |`s i ) e. LFinGen ) ) |
7 |
|
df-lnm |
|- LNoeM = { w e. LMod | A. i e. ( LSubSp ` w ) ( w |`s i ) e. LFinGen } |
8 |
6 7
|
elrab2 |
|- ( M e. LNoeM <-> ( M e. LMod /\ A. i e. S ( M |`s i ) e. LFinGen ) ) |