Metamath Proof Explorer


Theorem islnm2

Description: Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnm2.b
|- B = ( Base ` M )
islnm2.s
|- S = ( LSubSp ` M )
islnm2.n
|- N = ( LSpan ` M )
Assertion islnm2
|- ( M e. LNoeM <-> ( M e. LMod /\ A. i e. S E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )

Proof

Step Hyp Ref Expression
1 islnm2.b
 |-  B = ( Base ` M )
2 islnm2.s
 |-  S = ( LSubSp ` M )
3 islnm2.n
 |-  N = ( LSpan ` M )
4 2 islnm
 |-  ( M e. LNoeM <-> ( M e. LMod /\ A. i e. S ( M |`s i ) e. LFinGen ) )
5 eqid
 |-  ( M |`s i ) = ( M |`s i )
6 5 2 3 1 islssfg2
 |-  ( ( M e. LMod /\ i e. S ) -> ( ( M |`s i ) e. LFinGen <-> E. g e. ( ~P B i^i Fin ) ( N ` g ) = i ) )
7 eqcom
 |-  ( ( N ` g ) = i <-> i = ( N ` g ) )
8 7 rexbii
 |-  ( E. g e. ( ~P B i^i Fin ) ( N ` g ) = i <-> E. g e. ( ~P B i^i Fin ) i = ( N ` g ) )
9 6 8 bitrdi
 |-  ( ( M e. LMod /\ i e. S ) -> ( ( M |`s i ) e. LFinGen <-> E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
10 9 ralbidva
 |-  ( M e. LMod -> ( A. i e. S ( M |`s i ) e. LFinGen <-> A. i e. S E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
11 10 pm5.32i
 |-  ( ( M e. LMod /\ A. i e. S ( M |`s i ) e. LFinGen ) <-> ( M e. LMod /\ A. i e. S E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )
12 4 11 bitri
 |-  ( M e. LNoeM <-> ( M e. LMod /\ A. i e. S E. g e. ( ~P B i^i Fin ) i = ( N ` g ) ) )