| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|- P = ( Base ` G ) |
| 2 |
|
hpg.d |
|- .- = ( dist ` G ) |
| 3 |
|
hpg.i |
|- I = ( Itv ` G ) |
| 4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 5 |
|
islnoppd.a |
|- ( ph -> A e. P ) |
| 6 |
|
islnoppd.b |
|- ( ph -> B e. P ) |
| 7 |
|
islnoppd.c |
|- ( ph -> C e. D ) |
| 8 |
|
islnoppd.1 |
|- ( ph -> -. A e. D ) |
| 9 |
|
islnoppd.2 |
|- ( ph -> -. B e. D ) |
| 10 |
|
islnoppd.3 |
|- ( ph -> C e. ( A I B ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ t = C ) -> t = C ) |
| 12 |
11
|
eleq1d |
|- ( ( ph /\ t = C ) -> ( t e. ( A I B ) <-> C e. ( A I B ) ) ) |
| 13 |
7 12 10
|
rspcedvd |
|- ( ph -> E. t e. D t e. ( A I B ) ) |
| 14 |
8 9 13
|
jca31 |
|- ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) |
| 15 |
1 2 3 4 5 6
|
islnopp |
|- ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) ) |
| 16 |
14 15
|
mpbird |
|- ( ph -> A O B ) |