Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|- P = ( Base ` G ) |
2 |
|
hpg.d |
|- .- = ( dist ` G ) |
3 |
|
hpg.i |
|- I = ( Itv ` G ) |
4 |
|
hpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
islnoppd.a |
|- ( ph -> A e. P ) |
6 |
|
islnoppd.b |
|- ( ph -> B e. P ) |
7 |
|
islnoppd.c |
|- ( ph -> C e. D ) |
8 |
|
islnoppd.1 |
|- ( ph -> -. A e. D ) |
9 |
|
islnoppd.2 |
|- ( ph -> -. B e. D ) |
10 |
|
islnoppd.3 |
|- ( ph -> C e. ( A I B ) ) |
11 |
|
simpr |
|- ( ( ph /\ t = C ) -> t = C ) |
12 |
11
|
eleq1d |
|- ( ( ph /\ t = C ) -> ( t e. ( A I B ) <-> C e. ( A I B ) ) ) |
13 |
7 12 10
|
rspcedvd |
|- ( ph -> E. t e. D t e. ( A I B ) ) |
14 |
8 9 13
|
jca31 |
|- ( ph -> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) |
15 |
1 2 3 4 5 6
|
islnopp |
|- ( ph -> ( A O B <-> ( ( -. A e. D /\ -. B e. D ) /\ E. t e. D t e. ( A I B ) ) ) ) |
16 |
14 15
|
mpbird |
|- ( ph -> A O B ) |