Step |
Hyp |
Ref |
Expression |
1 |
|
islpcn.s |
|- ( ph -> S C_ CC ) |
2 |
|
islpcn.p |
|- ( ph -> P e. CC ) |
3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
4 |
3
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
5 |
4
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
6 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
7 |
6
|
islp2 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC /\ P e. CC ) -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
8 |
5 1 2 7
|
syl3anc |
|- ( ph -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
9 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
10 |
9
|
a1i |
|- ( ( ph /\ e e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
11 |
2
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> P e. CC ) |
12 |
|
simpr |
|- ( ( ph /\ e e. RR+ ) -> e e. RR+ ) |
13 |
3
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
14 |
13
|
blnei |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ e e. RR+ ) -> ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
15 |
10 11 12 14
|
syl3anc |
|- ( ( ph /\ e e. RR+ ) -> ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
16 |
15
|
adantlr |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
17 |
|
simplr |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) |
18 |
|
ineq1 |
|- ( n = ( P ( ball ` ( abs o. - ) ) e ) -> ( n i^i ( S \ { P } ) ) = ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) |
19 |
18
|
neeq1d |
|- ( n = ( P ( ball ` ( abs o. - ) ) e ) -> ( ( n i^i ( S \ { P } ) ) =/= (/) <-> ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) ) ) |
20 |
19
|
rspcva |
|- ( ( ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) -> ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) ) |
21 |
16 17 20
|
syl2anc |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) ) |
22 |
|
n0 |
|- ( ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) <-> E. x x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) |
23 |
21 22
|
sylib |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> E. x x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) |
24 |
|
elinel2 |
|- ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> x e. ( S \ { P } ) ) |
25 |
24
|
adantl |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. ( S \ { P } ) ) |
26 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> S C_ CC ) |
27 |
24
|
eldifad |
|- ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> x e. S ) |
28 |
27
|
adantl |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. S ) |
29 |
26 28
|
sseldd |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. CC ) |
30 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> P e. CC ) |
31 |
29 30
|
abssubd |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) = ( abs ` ( P - x ) ) ) |
32 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
33 |
32
|
cnmetdval |
|- ( ( P e. CC /\ x e. CC ) -> ( P ( abs o. - ) x ) = ( abs ` ( P - x ) ) ) |
34 |
30 29 33
|
syl2anc |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( P - x ) ) ) |
35 |
31 34
|
eqtr4d |
|- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) = ( P ( abs o. - ) x ) ) |
36 |
35
|
adantlr |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) = ( P ( abs o. - ) x ) ) |
37 |
|
elinel1 |
|- ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
38 |
37
|
adantl |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
39 |
9
|
a1i |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
40 |
11
|
adantr |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> P e. CC ) |
41 |
|
rpxr |
|- ( e e. RR+ -> e e. RR* ) |
42 |
41
|
ad2antlr |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> e e. RR* ) |
43 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ e e. RR* ) -> ( x e. ( P ( ball ` ( abs o. - ) ) e ) <-> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) ) |
44 |
39 40 42 43
|
syl3anc |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( x e. ( P ( ball ` ( abs o. - ) ) e ) <-> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) ) |
45 |
38 44
|
mpbid |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) |
46 |
45
|
simprd |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( P ( abs o. - ) x ) < e ) |
47 |
36 46
|
eqbrtrd |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) < e ) |
48 |
25 47
|
jca |
|- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
49 |
48
|
ex |
|- ( ( ph /\ e e. RR+ ) -> ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) ) |
50 |
49
|
adantlr |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) ) |
51 |
50
|
eximdv |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( E. x x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) ) |
52 |
23 51
|
mpd |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
53 |
|
df-rex |
|- ( E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e <-> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
54 |
52 53
|
sylibr |
|- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
55 |
54
|
ralrimiva |
|- ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) -> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
56 |
9
|
a1i |
|- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
57 |
13
|
neibl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC ) -> ( n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) <-> ( n C_ CC /\ E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) ) ) |
58 |
56 2 57
|
syl2anc |
|- ( ph -> ( n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) <-> ( n C_ CC /\ E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) ) ) |
59 |
58
|
simplbda |
|- ( ( ph /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
60 |
59
|
adantlr |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
61 |
|
nfv |
|- F/ e ph |
62 |
|
nfra1 |
|- F/ e A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e |
63 |
61 62
|
nfan |
|- F/ e ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
64 |
|
nfv |
|- F/ e n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) |
65 |
63 64
|
nfan |
|- F/ e ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
66 |
|
nfv |
|- F/ e ( n i^i ( S \ { P } ) ) =/= (/) |
67 |
|
simp1l |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ph ) |
68 |
|
simp2 |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> e e. RR+ ) |
69 |
67 68
|
jca |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( ph /\ e e. RR+ ) ) |
70 |
|
rspa |
|- ( ( A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e /\ e e. RR+ ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
71 |
70
|
adantll |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
72 |
71
|
3adant3 |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
73 |
|
simp3 |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
74 |
53
|
biimpi |
|- ( E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
75 |
74
|
ad2antlr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
76 |
|
nfv |
|- F/ x ( ph /\ e e. RR+ ) |
77 |
|
nfre1 |
|- F/ x E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e |
78 |
76 77
|
nfan |
|- F/ x ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
79 |
|
nfv |
|- F/ x ( P ( ball ` ( abs o. - ) ) e ) C_ n |
80 |
78 79
|
nfan |
|- F/ x ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
81 |
|
simplr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
82 |
1
|
adantr |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> S C_ CC ) |
83 |
|
eldifi |
|- ( x e. ( S \ { P } ) -> x e. S ) |
84 |
83
|
adantl |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> x e. S ) |
85 |
82 84
|
sseldd |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> x e. CC ) |
86 |
85
|
adantrr |
|- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. CC ) |
87 |
2
|
adantr |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> P e. CC ) |
88 |
87 85 33
|
syl2anc |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( P - x ) ) ) |
89 |
87 85
|
abssubd |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> ( abs ` ( P - x ) ) = ( abs ` ( x - P ) ) ) |
90 |
88 89
|
eqtrd |
|- ( ( ph /\ x e. ( S \ { P } ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( x - P ) ) ) |
91 |
90
|
adantrr |
|- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( x - P ) ) ) |
92 |
|
simprr |
|- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( abs ` ( x - P ) ) < e ) |
93 |
91 92
|
eqbrtrd |
|- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( P ( abs o. - ) x ) < e ) |
94 |
86 93
|
jca |
|- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) |
95 |
94
|
adantlr |
|- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) |
96 |
9
|
a1i |
|- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
97 |
11
|
adantr |
|- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> P e. CC ) |
98 |
41
|
ad2antlr |
|- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> e e. RR* ) |
99 |
96 97 98 43
|
syl3anc |
|- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( x e. ( P ( ball ` ( abs o. - ) ) e ) <-> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) ) |
100 |
95 99
|
mpbird |
|- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
101 |
100
|
adantlr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
102 |
81 101
|
sseldd |
|- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. n ) |
103 |
|
simprl |
|- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( S \ { P } ) ) |
104 |
102 103
|
elind |
|- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( n i^i ( S \ { P } ) ) ) |
105 |
104
|
ex |
|- ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) -> x e. ( n i^i ( S \ { P } ) ) ) ) |
106 |
105
|
adantlr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) -> x e. ( n i^i ( S \ { P } ) ) ) ) |
107 |
80 106
|
eximd |
|- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) -> E. x x e. ( n i^i ( S \ { P } ) ) ) ) |
108 |
75 107
|
mpd |
|- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> E. x x e. ( n i^i ( S \ { P } ) ) ) |
109 |
|
n0 |
|- ( ( n i^i ( S \ { P } ) ) =/= (/) <-> E. x x e. ( n i^i ( S \ { P } ) ) ) |
110 |
108 109
|
sylibr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( n i^i ( S \ { P } ) ) =/= (/) ) |
111 |
69 72 73 110
|
syl21anc |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( n i^i ( S \ { P } ) ) =/= (/) ) |
112 |
111
|
3exp |
|- ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) -> ( e e. RR+ -> ( ( P ( ball ` ( abs o. - ) ) e ) C_ n -> ( n i^i ( S \ { P } ) ) =/= (/) ) ) ) |
113 |
112
|
adantr |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> ( e e. RR+ -> ( ( P ( ball ` ( abs o. - ) ) e ) C_ n -> ( n i^i ( S \ { P } ) ) =/= (/) ) ) ) |
114 |
65 66 113
|
rexlimd |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> ( E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n -> ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
115 |
60 114
|
mpd |
|- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> ( n i^i ( S \ { P } ) ) =/= (/) ) |
116 |
115
|
ralrimiva |
|- ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) -> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) |
117 |
55 116
|
impbida |
|- ( ph -> ( A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) <-> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) ) |
118 |
8 117
|
bitrd |
|- ( ph -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) ) |