| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p |  |-  P = ( LPIdeal ` R ) | 
						
							| 2 |  | lpiss.u |  |-  U = ( LIdeal ` R ) | 
						
							| 3 |  | fveq2 |  |-  ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) ) | 
						
							| 4 |  | fveq2 |  |-  ( r = R -> ( LPIdeal ` r ) = ( LPIdeal ` R ) ) | 
						
							| 5 | 3 4 | eqeq12d |  |-  ( r = R -> ( ( LIdeal ` r ) = ( LPIdeal ` r ) <-> ( LIdeal ` R ) = ( LPIdeal ` R ) ) ) | 
						
							| 6 | 2 1 | eqeq12i |  |-  ( U = P <-> ( LIdeal ` R ) = ( LPIdeal ` R ) ) | 
						
							| 7 | 5 6 | bitr4di |  |-  ( r = R -> ( ( LIdeal ` r ) = ( LPIdeal ` r ) <-> U = P ) ) | 
						
							| 8 |  | df-lpir |  |-  LPIR = { r e. Ring | ( LIdeal ` r ) = ( LPIdeal ` r ) } | 
						
							| 9 | 7 8 | elrab2 |  |-  ( R e. LPIR <-> ( R e. Ring /\ U = P ) ) |