Step |
Hyp |
Ref |
Expression |
1 |
|
islpln2a.l |
|- .<_ = ( le ` K ) |
2 |
|
islpln2a.j |
|- .\/ = ( join ` K ) |
3 |
|
islpln2a.a |
|- A = ( Atoms ` K ) |
4 |
|
islpln2a.p |
|- P = ( LPlanes ` K ) |
5 |
|
oveq1 |
|- ( Q = R -> ( Q .\/ R ) = ( R .\/ R ) ) |
6 |
2 3
|
hlatjidm |
|- ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R ) |
7 |
6
|
3ad2antr2 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( R .\/ R ) = R ) |
8 |
5 7
|
sylan9eqr |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> ( Q .\/ R ) = R ) |
9 |
8
|
oveq1d |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> ( ( Q .\/ R ) .\/ S ) = ( R .\/ S ) ) |
10 |
|
simpll |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> K e. HL ) |
11 |
|
simplr2 |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> R e. A ) |
12 |
|
simplr3 |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> S e. A ) |
13 |
2 3 4
|
2atnelpln |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> -. ( R .\/ S ) e. P ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> -. ( R .\/ S ) e. P ) |
15 |
9 14
|
eqneltrd |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> -. ( ( Q .\/ R ) .\/ S ) e. P ) |
16 |
15
|
ex |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Q = R -> -. ( ( Q .\/ R ) .\/ S ) e. P ) ) |
17 |
16
|
necon2ad |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P -> Q =/= R ) ) |
18 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
19 |
18
|
adantr |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> K e. Lat ) |
20 |
|
simpr3 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> S e. A ) |
21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
22 |
21 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
23 |
20 22
|
syl |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> S e. ( Base ` K ) ) |
24 |
21 2 3
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
25 |
24
|
3adant3r3 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
26 |
21 1 2
|
latleeqj2 |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) -> ( S .<_ ( Q .\/ R ) <-> ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) ) ) |
27 |
19 23 25 26
|
syl3anc |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S .<_ ( Q .\/ R ) <-> ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) ) ) |
28 |
2 3 4
|
2atnelpln |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> -. ( Q .\/ R ) e. P ) |
29 |
28
|
3adant3r3 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> -. ( Q .\/ R ) e. P ) |
30 |
|
eleq1 |
|- ( ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> ( Q .\/ R ) e. P ) ) |
31 |
30
|
notbid |
|- ( ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) -> ( -. ( ( Q .\/ R ) .\/ S ) e. P <-> -. ( Q .\/ R ) e. P ) ) |
32 |
29 31
|
syl5ibrcom |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) -> -. ( ( Q .\/ R ) .\/ S ) e. P ) ) |
33 |
27 32
|
sylbid |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S .<_ ( Q .\/ R ) -> -. ( ( Q .\/ R ) .\/ S ) e. P ) ) |
34 |
33
|
con2d |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P -> -. S .<_ ( Q .\/ R ) ) ) |
35 |
17 34
|
jcad |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) |
36 |
1 2 3 4
|
lplni2 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ S ) e. P ) |
37 |
36
|
3expia |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) -> ( ( Q .\/ R ) .\/ S ) e. P ) ) |
38 |
35 37
|
impbid |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) |