Metamath Proof Explorer


Theorem islpln2a

Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012)

Ref Expression
Hypotheses islpln2a.l
|- .<_ = ( le ` K )
islpln2a.j
|- .\/ = ( join ` K )
islpln2a.a
|- A = ( Atoms ` K )
islpln2a.p
|- P = ( LPlanes ` K )
Assertion islpln2a
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) )

Proof

Step Hyp Ref Expression
1 islpln2a.l
 |-  .<_ = ( le ` K )
2 islpln2a.j
 |-  .\/ = ( join ` K )
3 islpln2a.a
 |-  A = ( Atoms ` K )
4 islpln2a.p
 |-  P = ( LPlanes ` K )
5 oveq1
 |-  ( Q = R -> ( Q .\/ R ) = ( R .\/ R ) )
6 2 3 hlatjidm
 |-  ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R )
7 6 3ad2antr2
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( R .\/ R ) = R )
8 5 7 sylan9eqr
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> ( Q .\/ R ) = R )
9 8 oveq1d
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> ( ( Q .\/ R ) .\/ S ) = ( R .\/ S ) )
10 simpll
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> K e. HL )
11 simplr2
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> R e. A )
12 simplr3
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> S e. A )
13 2 3 4 2atnelpln
 |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> -. ( R .\/ S ) e. P )
14 10 11 12 13 syl3anc
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> -. ( R .\/ S ) e. P )
15 9 14 eqneltrd
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) /\ Q = R ) -> -. ( ( Q .\/ R ) .\/ S ) e. P )
16 15 ex
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Q = R -> -. ( ( Q .\/ R ) .\/ S ) e. P ) )
17 16 necon2ad
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P -> Q =/= R ) )
18 hllat
 |-  ( K e. HL -> K e. Lat )
19 18 adantr
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> K e. Lat )
20 simpr3
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> S e. A )
21 eqid
 |-  ( Base ` K ) = ( Base ` K )
22 21 3 atbase
 |-  ( S e. A -> S e. ( Base ` K ) )
23 20 22 syl
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> S e. ( Base ` K ) )
24 21 2 3 hlatjcl
 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) )
25 24 3adant3r3
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) )
26 21 1 2 latleeqj2
 |-  ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) -> ( S .<_ ( Q .\/ R ) <-> ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) ) )
27 19 23 25 26 syl3anc
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S .<_ ( Q .\/ R ) <-> ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) ) )
28 2 3 4 2atnelpln
 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> -. ( Q .\/ R ) e. P )
29 28 3adant3r3
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> -. ( Q .\/ R ) e. P )
30 eleq1
 |-  ( ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> ( Q .\/ R ) e. P ) )
31 30 notbid
 |-  ( ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) -> ( -. ( ( Q .\/ R ) .\/ S ) e. P <-> -. ( Q .\/ R ) e. P ) )
32 29 31 syl5ibrcom
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) = ( Q .\/ R ) -> -. ( ( Q .\/ R ) .\/ S ) e. P ) )
33 27 32 sylbid
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S .<_ ( Q .\/ R ) -> -. ( ( Q .\/ R ) .\/ S ) e. P ) )
34 33 con2d
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P -> -. S .<_ ( Q .\/ R ) ) )
35 17 34 jcad
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) )
36 1 2 3 4 lplni2
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ S ) e. P )
37 36 3expia
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) -> ( ( Q .\/ R ) .\/ S ) e. P ) )
38 35 37 impbid
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) )