Step |
Hyp |
Ref |
Expression |
1 |
|
islss3.x |
|- X = ( W |`s U ) |
2 |
|
islss3.v |
|- V = ( Base ` W ) |
3 |
|
islss3.s |
|- S = ( LSubSp ` W ) |
4 |
2 3
|
lssss |
|- ( U e. S -> U C_ V ) |
5 |
4
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> U C_ V ) |
6 |
1 2
|
ressbas2 |
|- ( U C_ V -> U = ( Base ` X ) ) |
7 |
6
|
adantl |
|- ( ( W e. LMod /\ U C_ V ) -> U = ( Base ` X ) ) |
8 |
4 7
|
sylan2 |
|- ( ( W e. LMod /\ U e. S ) -> U = ( Base ` X ) ) |
9 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
10 |
1 9
|
ressplusg |
|- ( U e. S -> ( +g ` W ) = ( +g ` X ) ) |
11 |
10
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( +g ` W ) = ( +g ` X ) ) |
12 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
13 |
1 12
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
14 |
13
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
15 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
16 |
1 15
|
ressvsca |
|- ( U e. S -> ( .s ` W ) = ( .s ` X ) ) |
17 |
16
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( .s ` W ) = ( .s ` X ) ) |
18 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
19 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) ) |
20 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) ) |
21 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) ) |
22 |
12
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
23 |
22
|
adantr |
|- ( ( W e. LMod /\ U e. S ) -> ( Scalar ` W ) e. Ring ) |
24 |
3
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
25 |
1
|
subggrp |
|- ( U e. ( SubGrp ` W ) -> X e. Grp ) |
26 |
24 25
|
syl |
|- ( ( W e. LMod /\ U e. S ) -> X e. Grp ) |
27 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
28 |
12 15 27 3
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U ) ) -> ( x ( .s ` W ) a ) e. U ) |
29 |
28
|
3impb |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. ( Base ` ( Scalar ` W ) ) /\ a e. U ) -> ( x ( .s ` W ) a ) e. U ) |
30 |
|
simpll |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> W e. LMod ) |
31 |
|
simpr1 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
32 |
4
|
ad2antlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> U C_ V ) |
33 |
|
simpr2 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> a e. U ) |
34 |
32 33
|
sseldd |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> a e. V ) |
35 |
|
simpr3 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> b e. U ) |
36 |
32 35
|
sseldd |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> b e. V ) |
37 |
2 9 12 15 27
|
lmodvsdi |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( x ( .s ` W ) ( a ( +g ` W ) b ) ) = ( ( x ( .s ` W ) a ) ( +g ` W ) ( x ( .s ` W ) b ) ) ) |
38 |
30 31 34 36 37
|
syl13anc |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` W ) ( a ( +g ` W ) b ) ) = ( ( x ( .s ` W ) a ) ( +g ` W ) ( x ( .s ` W ) b ) ) ) |
39 |
|
simpll |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> W e. LMod ) |
40 |
|
simpr1 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
41 |
|
simpr2 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
42 |
4
|
ad2antlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> U C_ V ) |
43 |
|
simpr3 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> b e. U ) |
44 |
42 43
|
sseldd |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> b e. V ) |
45 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
46 |
2 9 12 15 27 45
|
lmodvsdir |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. V ) ) -> ( ( x ( +g ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( ( x ( .s ` W ) b ) ( +g ` W ) ( a ( .s ` W ) b ) ) ) |
47 |
39 40 41 44 46
|
syl13anc |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> ( ( x ( +g ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( ( x ( .s ` W ) b ) ( +g ` W ) ( a ( .s ` W ) b ) ) ) |
48 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
49 |
2 12 15 27 48
|
lmodvsass |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. V ) ) -> ( ( x ( .r ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( x ( .s ` W ) ( a ( .s ` W ) b ) ) ) |
50 |
39 40 41 44 49
|
syl13anc |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> ( ( x ( .r ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( x ( .s ` W ) ( a ( .s ` W ) b ) ) ) |
51 |
5
|
sselda |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> x e. V ) |
52 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
53 |
2 12 15 52
|
lmodvs1 |
|- ( ( W e. LMod /\ x e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
54 |
53
|
adantlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
55 |
51 54
|
syldan |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
56 |
8 11 14 17 18 19 20 21 23 26 29 38 47 50 55
|
islmodd |
|- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
57 |
5 56
|
jca |
|- ( ( W e. LMod /\ U e. S ) -> ( U C_ V /\ X e. LMod ) ) |
58 |
|
simprl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U C_ V ) |
59 |
58 6
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U = ( Base ` X ) ) |
60 |
|
fvex |
|- ( Base ` X ) e. _V |
61 |
59 60
|
eqeltrdi |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U e. _V ) |
62 |
1 12
|
resssca |
|- ( U e. _V -> ( Scalar ` W ) = ( Scalar ` X ) ) |
63 |
61 62
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
64 |
63
|
eqcomd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Scalar ` X ) = ( Scalar ` W ) ) |
65 |
|
eqidd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) ) |
66 |
2
|
a1i |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> V = ( Base ` W ) ) |
67 |
1 9
|
ressplusg |
|- ( U e. _V -> ( +g ` W ) = ( +g ` X ) ) |
68 |
61 67
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( +g ` W ) = ( +g ` X ) ) |
69 |
68
|
eqcomd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( +g ` X ) = ( +g ` W ) ) |
70 |
1 15
|
ressvsca |
|- ( U e. _V -> ( .s ` W ) = ( .s ` X ) ) |
71 |
61 70
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( .s ` W ) = ( .s ` X ) ) |
72 |
71
|
eqcomd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( .s ` X ) = ( .s ` W ) ) |
73 |
3
|
a1i |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> S = ( LSubSp ` W ) ) |
74 |
59 58
|
eqsstrrd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) C_ V ) |
75 |
|
lmodgrp |
|- ( X e. LMod -> X e. Grp ) |
76 |
75
|
ad2antll |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> X e. Grp ) |
77 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
78 |
77
|
grpbn0 |
|- ( X e. Grp -> ( Base ` X ) =/= (/) ) |
79 |
76 78
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) =/= (/) ) |
80 |
|
eqid |
|- ( LSubSp ` X ) = ( LSubSp ` X ) |
81 |
77 80
|
lss1 |
|- ( X e. LMod -> ( Base ` X ) e. ( LSubSp ` X ) ) |
82 |
81
|
ad2antll |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) e. ( LSubSp ` X ) ) |
83 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
84 |
|
eqid |
|- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
85 |
|
eqid |
|- ( +g ` X ) = ( +g ` X ) |
86 |
|
eqid |
|- ( .s ` X ) = ( .s ` X ) |
87 |
83 84 85 86 80
|
lsscl |
|- ( ( ( Base ` X ) e. ( LSubSp ` X ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ a e. ( Base ` X ) /\ b e. ( Base ` X ) ) ) -> ( ( x ( .s ` X ) a ) ( +g ` X ) b ) e. ( Base ` X ) ) |
88 |
82 87
|
sylan |
|- ( ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ a e. ( Base ` X ) /\ b e. ( Base ` X ) ) ) -> ( ( x ( .s ` X ) a ) ( +g ` X ) b ) e. ( Base ` X ) ) |
89 |
64 65 66 69 72 73 74 79 88
|
islssd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) e. S ) |
90 |
59 89
|
eqeltrd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U e. S ) |
91 |
57 90
|
impbida |
|- ( W e. LMod -> ( U e. S <-> ( U C_ V /\ X e. LMod ) ) ) |