| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islss3.x |
|- X = ( W |`s U ) |
| 2 |
|
islss3.v |
|- V = ( Base ` W ) |
| 3 |
|
islss3.s |
|- S = ( LSubSp ` W ) |
| 4 |
2 3
|
lssss |
|- ( U e. S -> U C_ V ) |
| 5 |
4
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> U C_ V ) |
| 6 |
1 2
|
ressbas2 |
|- ( U C_ V -> U = ( Base ` X ) ) |
| 7 |
6
|
adantl |
|- ( ( W e. LMod /\ U C_ V ) -> U = ( Base ` X ) ) |
| 8 |
4 7
|
sylan2 |
|- ( ( W e. LMod /\ U e. S ) -> U = ( Base ` X ) ) |
| 9 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 10 |
1 9
|
ressplusg |
|- ( U e. S -> ( +g ` W ) = ( +g ` X ) ) |
| 11 |
10
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( +g ` W ) = ( +g ` X ) ) |
| 12 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 13 |
1 12
|
resssca |
|- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 14 |
13
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 15 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 16 |
1 15
|
ressvsca |
|- ( U e. S -> ( .s ` W ) = ( .s ` X ) ) |
| 17 |
16
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( .s ` W ) = ( .s ` X ) ) |
| 18 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
| 19 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) ) |
| 20 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) ) |
| 21 |
|
eqidd |
|- ( ( W e. LMod /\ U e. S ) -> ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) ) |
| 22 |
12
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 23 |
22
|
adantr |
|- ( ( W e. LMod /\ U e. S ) -> ( Scalar ` W ) e. Ring ) |
| 24 |
3
|
lsssubg |
|- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 25 |
1
|
subggrp |
|- ( U e. ( SubGrp ` W ) -> X e. Grp ) |
| 26 |
24 25
|
syl |
|- ( ( W e. LMod /\ U e. S ) -> X e. Grp ) |
| 27 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 28 |
12 15 27 3
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U ) ) -> ( x ( .s ` W ) a ) e. U ) |
| 29 |
28
|
3impb |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. ( Base ` ( Scalar ` W ) ) /\ a e. U ) -> ( x ( .s ` W ) a ) e. U ) |
| 30 |
|
simpll |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> W e. LMod ) |
| 31 |
|
simpr1 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
| 32 |
4
|
ad2antlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> U C_ V ) |
| 33 |
|
simpr2 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> a e. U ) |
| 34 |
32 33
|
sseldd |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> a e. V ) |
| 35 |
|
simpr3 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> b e. U ) |
| 36 |
32 35
|
sseldd |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> b e. V ) |
| 37 |
2 9 12 15 27
|
lmodvsdi |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( x ( .s ` W ) ( a ( +g ` W ) b ) ) = ( ( x ( .s ` W ) a ) ( +g ` W ) ( x ( .s ` W ) b ) ) ) |
| 38 |
30 31 34 36 37
|
syl13anc |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. U /\ b e. U ) ) -> ( x ( .s ` W ) ( a ( +g ` W ) b ) ) = ( ( x ( .s ` W ) a ) ( +g ` W ) ( x ( .s ` W ) b ) ) ) |
| 39 |
|
simpll |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> W e. LMod ) |
| 40 |
|
simpr1 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
| 41 |
|
simpr2 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
| 42 |
4
|
ad2antlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> U C_ V ) |
| 43 |
|
simpr3 |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> b e. U ) |
| 44 |
42 43
|
sseldd |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> b e. V ) |
| 45 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
| 46 |
2 9 12 15 27 45
|
lmodvsdir |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. V ) ) -> ( ( x ( +g ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( ( x ( .s ` W ) b ) ( +g ` W ) ( a ( .s ` W ) b ) ) ) |
| 47 |
39 40 41 44 46
|
syl13anc |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> ( ( x ( +g ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( ( x ( .s ` W ) b ) ( +g ` W ) ( a ( .s ` W ) b ) ) ) |
| 48 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
| 49 |
2 12 15 27 48
|
lmodvsass |
|- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. V ) ) -> ( ( x ( .r ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( x ( .s ` W ) ( a ( .s ` W ) b ) ) ) |
| 50 |
39 40 41 44 49
|
syl13anc |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. ( Base ` ( Scalar ` W ) ) /\ b e. U ) ) -> ( ( x ( .r ` ( Scalar ` W ) ) a ) ( .s ` W ) b ) = ( x ( .s ` W ) ( a ( .s ` W ) b ) ) ) |
| 51 |
5
|
sselda |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> x e. V ) |
| 52 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 53 |
2 12 15 52
|
lmodvs1 |
|- ( ( W e. LMod /\ x e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
| 54 |
53
|
adantlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
| 55 |
51 54
|
syldan |
|- ( ( ( W e. LMod /\ U e. S ) /\ x e. U ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) x ) = x ) |
| 56 |
8 11 14 17 18 19 20 21 23 26 29 38 47 50 55
|
islmodd |
|- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
| 57 |
5 56
|
jca |
|- ( ( W e. LMod /\ U e. S ) -> ( U C_ V /\ X e. LMod ) ) |
| 58 |
|
simprl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U C_ V ) |
| 59 |
58 6
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U = ( Base ` X ) ) |
| 60 |
|
fvex |
|- ( Base ` X ) e. _V |
| 61 |
59 60
|
eqeltrdi |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U e. _V ) |
| 62 |
1 12
|
resssca |
|- ( U e. _V -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 63 |
61 62
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 64 |
63
|
eqcomd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Scalar ` X ) = ( Scalar ` W ) ) |
| 65 |
|
eqidd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) ) |
| 66 |
2
|
a1i |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> V = ( Base ` W ) ) |
| 67 |
1 9
|
ressplusg |
|- ( U e. _V -> ( +g ` W ) = ( +g ` X ) ) |
| 68 |
61 67
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( +g ` W ) = ( +g ` X ) ) |
| 69 |
68
|
eqcomd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( +g ` X ) = ( +g ` W ) ) |
| 70 |
1 15
|
ressvsca |
|- ( U e. _V -> ( .s ` W ) = ( .s ` X ) ) |
| 71 |
61 70
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( .s ` W ) = ( .s ` X ) ) |
| 72 |
71
|
eqcomd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( .s ` X ) = ( .s ` W ) ) |
| 73 |
3
|
a1i |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> S = ( LSubSp ` W ) ) |
| 74 |
59 58
|
eqsstrrd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) C_ V ) |
| 75 |
|
lmodgrp |
|- ( X e. LMod -> X e. Grp ) |
| 76 |
75
|
ad2antll |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> X e. Grp ) |
| 77 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
| 78 |
77
|
grpbn0 |
|- ( X e. Grp -> ( Base ` X ) =/= (/) ) |
| 79 |
76 78
|
syl |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) =/= (/) ) |
| 80 |
|
eqid |
|- ( LSubSp ` X ) = ( LSubSp ` X ) |
| 81 |
77 80
|
lss1 |
|- ( X e. LMod -> ( Base ` X ) e. ( LSubSp ` X ) ) |
| 82 |
81
|
ad2antll |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) e. ( LSubSp ` X ) ) |
| 83 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
| 84 |
|
eqid |
|- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
| 85 |
|
eqid |
|- ( +g ` X ) = ( +g ` X ) |
| 86 |
|
eqid |
|- ( .s ` X ) = ( .s ` X ) |
| 87 |
83 84 85 86 80
|
lsscl |
|- ( ( ( Base ` X ) e. ( LSubSp ` X ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ a e. ( Base ` X ) /\ b e. ( Base ` X ) ) ) -> ( ( x ( .s ` X ) a ) ( +g ` X ) b ) e. ( Base ` X ) ) |
| 88 |
82 87
|
sylan |
|- ( ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ a e. ( Base ` X ) /\ b e. ( Base ` X ) ) ) -> ( ( x ( .s ` X ) a ) ( +g ` X ) b ) e. ( Base ` X ) ) |
| 89 |
64 65 66 69 72 73 74 79 88
|
islssd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> ( Base ` X ) e. S ) |
| 90 |
59 89
|
eqeltrd |
|- ( ( W e. LMod /\ ( U C_ V /\ X e. LMod ) ) -> U e. S ) |
| 91 |
57 90
|
impbida |
|- ( W e. LMod -> ( U e. S <-> ( U C_ V /\ X e. LMod ) ) ) |