Step |
Hyp |
Ref |
Expression |
1 |
|
islssfg.x |
|- X = ( W |`s U ) |
2 |
|
islssfg.s |
|- S = ( LSubSp ` W ) |
3 |
|
islssfg.n |
|- N = ( LSpan ` W ) |
4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
5 |
4 2
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
6 |
1 4
|
ressbas2 |
|- ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) |
7 |
5 6
|
syl |
|- ( U e. S -> U = ( Base ` X ) ) |
8 |
7
|
pweqd |
|- ( U e. S -> ~P U = ~P ( Base ` X ) ) |
9 |
8
|
rexeqdv |
|- ( U e. S -> ( E. b e. ~P U ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) <-> E. b e. ~P ( Base ` X ) ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) ) |
10 |
9
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> ( E. b e. ~P U ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) <-> E. b e. ~P ( Base ` X ) ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) ) |
11 |
|
elpwi |
|- ( b e. ~P U -> b C_ U ) |
12 |
|
eqid |
|- ( LSpan ` X ) = ( LSpan ` X ) |
13 |
1 3 12 2
|
lsslsp |
|- ( ( W e. LMod /\ U e. S /\ b C_ U ) -> ( N ` b ) = ( ( LSpan ` X ) ` b ) ) |
14 |
13
|
3expa |
|- ( ( ( W e. LMod /\ U e. S ) /\ b C_ U ) -> ( N ` b ) = ( ( LSpan ` X ) ` b ) ) |
15 |
11 14
|
sylan2 |
|- ( ( ( W e. LMod /\ U e. S ) /\ b e. ~P U ) -> ( N ` b ) = ( ( LSpan ` X ) ` b ) ) |
16 |
7
|
ad2antlr |
|- ( ( ( W e. LMod /\ U e. S ) /\ b e. ~P U ) -> U = ( Base ` X ) ) |
17 |
15 16
|
eqeq12d |
|- ( ( ( W e. LMod /\ U e. S ) /\ b e. ~P U ) -> ( ( N ` b ) = U <-> ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) |
18 |
17
|
anbi2d |
|- ( ( ( W e. LMod /\ U e. S ) /\ b e. ~P U ) -> ( ( b e. Fin /\ ( N ` b ) = U ) <-> ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) ) |
19 |
18
|
rexbidva |
|- ( ( W e. LMod /\ U e. S ) -> ( E. b e. ~P U ( b e. Fin /\ ( N ` b ) = U ) <-> E. b e. ~P U ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) ) |
20 |
1 2
|
lsslmod |
|- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
21 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
22 |
21 12
|
islmodfg |
|- ( X e. LMod -> ( X e. LFinGen <-> E. b e. ~P ( Base ` X ) ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) ) |
23 |
20 22
|
syl |
|- ( ( W e. LMod /\ U e. S ) -> ( X e. LFinGen <-> E. b e. ~P ( Base ` X ) ( b e. Fin /\ ( ( LSpan ` X ) ` b ) = ( Base ` X ) ) ) ) |
24 |
10 19 23
|
3bitr4rd |
|- ( ( W e. LMod /\ U e. S ) -> ( X e. LFinGen <-> E. b e. ~P U ( b e. Fin /\ ( N ` b ) = U ) ) ) |