Step |
Hyp |
Ref |
Expression |
1 |
|
islssfgi.n |
|- N = ( LSpan ` W ) |
2 |
|
islssfgi.v |
|- V = ( Base ` W ) |
3 |
|
islssfgi.x |
|- X = ( W |`s ( N ` B ) ) |
4 |
2
|
fvexi |
|- V e. _V |
5 |
4
|
elpw2 |
|- ( B e. ~P V <-> B C_ V ) |
6 |
5
|
biimpri |
|- ( B C_ V -> B e. ~P V ) |
7 |
6
|
3ad2ant2 |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> B e. ~P V ) |
8 |
|
simp3 |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> B e. Fin ) |
9 |
7 8
|
elind |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> B e. ( ~P V i^i Fin ) ) |
10 |
|
eqid |
|- ( N ` B ) = ( N ` B ) |
11 |
|
fveqeq2 |
|- ( a = B -> ( ( N ` a ) = ( N ` B ) <-> ( N ` B ) = ( N ` B ) ) ) |
12 |
11
|
rspcev |
|- ( ( B e. ( ~P V i^i Fin ) /\ ( N ` B ) = ( N ` B ) ) -> E. a e. ( ~P V i^i Fin ) ( N ` a ) = ( N ` B ) ) |
13 |
9 10 12
|
sylancl |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> E. a e. ( ~P V i^i Fin ) ( N ` a ) = ( N ` B ) ) |
14 |
|
simp1 |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> W e. LMod ) |
15 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
16 |
2 15 1
|
lspcl |
|- ( ( W e. LMod /\ B C_ V ) -> ( N ` B ) e. ( LSubSp ` W ) ) |
17 |
16
|
3adant3 |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> ( N ` B ) e. ( LSubSp ` W ) ) |
18 |
3 15 1 2
|
islssfg2 |
|- ( ( W e. LMod /\ ( N ` B ) e. ( LSubSp ` W ) ) -> ( X e. LFinGen <-> E. a e. ( ~P V i^i Fin ) ( N ` a ) = ( N ` B ) ) ) |
19 |
14 17 18
|
syl2anc |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> ( X e. LFinGen <-> E. a e. ( ~P V i^i Fin ) ( N ` a ) = ( N ` B ) ) ) |
20 |
13 19
|
mpbird |
|- ( ( W e. LMod /\ B C_ V /\ B e. Fin ) -> X e. LFinGen ) |