Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnset.l |
|- .<_ = ( le ` K ) |
2 |
|
ltrnset.j |
|- .\/ = ( join ` K ) |
3 |
|
ltrnset.m |
|- ./\ = ( meet ` K ) |
4 |
|
ltrnset.a |
|- A = ( Atoms ` K ) |
5 |
|
ltrnset.h |
|- H = ( LHyp ` K ) |
6 |
|
ltrnset.d |
|- D = ( ( LDil ` K ) ` W ) |
7 |
|
ltrnset.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
1 2 3 4 5 6 7
|
ltrnset |
|- ( ( K e. B /\ W e. H ) -> T = { f e. D | A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( q .\/ ( f ` q ) ) ./\ W ) ) } ) |
9 |
8
|
eleq2d |
|- ( ( K e. B /\ W e. H ) -> ( F e. T <-> F e. { f e. D | A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( q .\/ ( f ` q ) ) ./\ W ) ) } ) ) |
10 |
|
fveq1 |
|- ( f = F -> ( f ` p ) = ( F ` p ) ) |
11 |
10
|
oveq2d |
|- ( f = F -> ( p .\/ ( f ` p ) ) = ( p .\/ ( F ` p ) ) ) |
12 |
11
|
oveq1d |
|- ( f = F -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( p .\/ ( F ` p ) ) ./\ W ) ) |
13 |
|
fveq1 |
|- ( f = F -> ( f ` q ) = ( F ` q ) ) |
14 |
13
|
oveq2d |
|- ( f = F -> ( q .\/ ( f ` q ) ) = ( q .\/ ( F ` q ) ) ) |
15 |
14
|
oveq1d |
|- ( f = F -> ( ( q .\/ ( f ` q ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) |
16 |
12 15
|
eqeq12d |
|- ( f = F -> ( ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( q .\/ ( f ` q ) ) ./\ W ) <-> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
17 |
16
|
imbi2d |
|- ( f = F -> ( ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( q .\/ ( f ` q ) ) ./\ W ) ) <-> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
18 |
17
|
2ralbidv |
|- ( f = F -> ( A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( q .\/ ( f ` q ) ) ./\ W ) ) <-> A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
19 |
18
|
elrab |
|- ( F e. { f e. D | A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( q .\/ ( f ` q ) ) ./\ W ) ) } <-> ( F e. D /\ A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
20 |
9 19
|
bitrdi |
|- ( ( K e. B /\ W e. H ) -> ( F e. T <-> ( F e. D /\ A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) ) |