Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnset.l |
|- .<_ = ( le ` K ) |
2 |
|
ltrnset.j |
|- .\/ = ( join ` K ) |
3 |
|
ltrnset.m |
|- ./\ = ( meet ` K ) |
4 |
|
ltrnset.a |
|- A = ( Atoms ` K ) |
5 |
|
ltrnset.h |
|- H = ( LHyp ` K ) |
6 |
|
ltrnset.d |
|- D = ( ( LDil ` K ) ` W ) |
7 |
|
ltrnset.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
1 2 3 4 5 6 7
|
isltrn |
|- ( ( K e. B /\ W e. H ) -> ( F e. T <-> ( F e. D /\ A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) ) |
9 |
|
3simpa |
|- ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( -. p .<_ W /\ -. q .<_ W ) ) |
10 |
9
|
imim1i |
|- ( ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) -> ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
11 |
|
3anass |
|- ( ( p =/= q /\ -. p .<_ W /\ -. q .<_ W ) <-> ( p =/= q /\ ( -. p .<_ W /\ -. q .<_ W ) ) ) |
12 |
|
3anrot |
|- ( ( p =/= q /\ -. p .<_ W /\ -. q .<_ W ) <-> ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) ) |
13 |
|
df-ne |
|- ( p =/= q <-> -. p = q ) |
14 |
13
|
anbi1i |
|- ( ( p =/= q /\ ( -. p .<_ W /\ -. q .<_ W ) ) <-> ( -. p = q /\ ( -. p .<_ W /\ -. q .<_ W ) ) ) |
15 |
11 12 14
|
3bitr3i |
|- ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) <-> ( -. p = q /\ ( -. p .<_ W /\ -. q .<_ W ) ) ) |
16 |
15
|
imbi1i |
|- ( ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> ( ( -. p = q /\ ( -. p .<_ W /\ -. q .<_ W ) ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
17 |
|
impexp |
|- ( ( ( -. p = q /\ ( -. p .<_ W /\ -. q .<_ W ) ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> ( -. p = q -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
18 |
16 17
|
bitri |
|- ( ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> ( -. p = q -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
19 |
|
id |
|- ( p = q -> p = q ) |
20 |
|
fveq2 |
|- ( p = q -> ( F ` p ) = ( F ` q ) ) |
21 |
19 20
|
oveq12d |
|- ( p = q -> ( p .\/ ( F ` p ) ) = ( q .\/ ( F ` q ) ) ) |
22 |
21
|
oveq1d |
|- ( p = q -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) |
23 |
22
|
a1d |
|- ( p = q -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
24 |
|
pm2.61 |
|- ( ( p = q -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) -> ( ( -. p = q -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
25 |
23 24
|
ax-mp |
|- ( ( -. p = q -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
26 |
18 25
|
sylbi |
|- ( ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) -> ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
27 |
10 26
|
impbii |
|- ( ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
28 |
27
|
2ralbii |
|- ( A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
29 |
28
|
anbi2i |
|- ( ( F e. D /\ A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) <-> ( F e. D /\ A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
30 |
8 29
|
bitrdi |
|- ( ( K e. B /\ W e. H ) -> ( F e. T <-> ( F e. D /\ A. p e. A A. q e. A ( ( -. p .<_ W /\ -. q .<_ W /\ p =/= q ) -> ( ( p .\/ ( F ` p ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) ) |