Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | islvec.1 | |- F = ( Scalar ` W ) |
|
Assertion | islvec | |- ( W e. LVec <-> ( W e. LMod /\ F e. DivRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | |- F = ( Scalar ` W ) |
|
2 | fveq2 | |- ( f = W -> ( Scalar ` f ) = ( Scalar ` W ) ) |
|
3 | 2 1 | eqtr4di | |- ( f = W -> ( Scalar ` f ) = F ) |
4 | 3 | eleq1d | |- ( f = W -> ( ( Scalar ` f ) e. DivRing <-> F e. DivRing ) ) |
5 | df-lvec | |- LVec = { f e. LMod | ( Scalar ` f ) e. DivRing } |
|
6 | 4 5 | elrab2 | |- ( W e. LVec <-> ( W e. LMod /\ F e. DivRing ) ) |