Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islvol5.b | |- B = ( Base ` K ) | |
| islvol5.l | |- .<_ = ( le ` K ) | ||
| islvol5.j | |- .\/ = ( join ` K ) | ||
| islvol5.a | |- A = ( Atoms ` K ) | ||
| islvol5.v | |- V = ( LVols ` K ) | ||
| Assertion | islvol2 | |- ( K e. HL -> ( X e. V <-> ( X e. B /\ E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ X = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | islvol5.b | |- B = ( Base ` K ) | |
| 2 | islvol5.l | |- .<_ = ( le ` K ) | |
| 3 | islvol5.j | |- .\/ = ( join ` K ) | |
| 4 | islvol5.a | |- A = ( Atoms ` K ) | |
| 5 | islvol5.v | |- V = ( LVols ` K ) | |
| 6 | 1 5 | lvolbase | |- ( X e. V -> X e. B ) | 
| 7 | 6 | pm4.71ri | |- ( X e. V <-> ( X e. B /\ X e. V ) ) | 
| 8 | 1 2 3 4 5 | islvol5 | |- ( ( K e. HL /\ X e. B ) -> ( X e. V <-> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ X = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) | 
| 9 | 8 | pm5.32da | |- ( K e. HL -> ( ( X e. B /\ X e. V ) <-> ( X e. B /\ E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ X = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) | 
| 10 | 7 9 | bitrid | |- ( K e. HL -> ( X e. V <-> ( X e. B /\ E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ X = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) |