Step |
Hyp |
Ref |
Expression |
1 |
|
islvol2a.l |
|- .<_ = ( le ` K ) |
2 |
|
islvol2a.j |
|- .\/ = ( join ` K ) |
3 |
|
islvol2a.a |
|- A = ( Atoms ` K ) |
4 |
|
islvol2a.v |
|- V = ( LVols ` K ) |
5 |
|
oveq1 |
|- ( P = Q -> ( P .\/ Q ) = ( Q .\/ Q ) ) |
6 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> K e. HL ) |
7 |
|
simpl3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> Q e. A ) |
8 |
2 3
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
9 |
6 7 8
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( Q .\/ Q ) = Q ) |
10 |
5 9
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ P = Q ) -> ( P .\/ Q ) = Q ) |
11 |
10
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ P = Q ) -> ( ( P .\/ Q ) .\/ R ) = ( Q .\/ R ) ) |
12 |
11
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ P = Q ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) ) |
13 |
|
simprl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> R e. A ) |
14 |
|
simprr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> S e. A ) |
15 |
2 3 4
|
3atnelvolN |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> -. ( ( Q .\/ R ) .\/ S ) e. V ) |
16 |
6 7 13 14 15
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> -. ( ( Q .\/ R ) .\/ S ) e. V ) |
17 |
16
|
adantr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ P = Q ) -> -. ( ( Q .\/ R ) .\/ S ) e. V ) |
18 |
12 17
|
eqneltrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ P = Q ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) |
19 |
18
|
ex |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( P = Q -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) ) |
20 |
19
|
necon2ad |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V -> P =/= Q ) ) |
21 |
6
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> K e. Lat ) |
22 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
23 |
22 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
24 |
23
|
ad2antrl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> R e. ( Base ` K ) ) |
25 |
22 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
26 |
25
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
27 |
22 1 2
|
latleeqj2 |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( R .<_ ( P .\/ Q ) <-> ( ( P .\/ Q ) .\/ R ) = ( P .\/ Q ) ) ) |
28 |
21 24 26 27
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( R .<_ ( P .\/ Q ) <-> ( ( P .\/ Q ) .\/ R ) = ( P .\/ Q ) ) ) |
29 |
|
simpl2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> P e. A ) |
30 |
2 3 4
|
3atnelvolN |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> -. ( ( P .\/ Q ) .\/ S ) e. V ) |
31 |
6 29 7 14 30
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> -. ( ( P .\/ Q ) .\/ S ) e. V ) |
32 |
|
oveq1 |
|- ( ( ( P .\/ Q ) .\/ R ) = ( P .\/ Q ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ S ) ) |
33 |
32
|
eleq1d |
|- ( ( ( P .\/ Q ) .\/ R ) = ( P .\/ Q ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> ( ( P .\/ Q ) .\/ S ) e. V ) ) |
34 |
33
|
notbid |
|- ( ( ( P .\/ Q ) .\/ R ) = ( P .\/ Q ) -> ( -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> -. ( ( P .\/ Q ) .\/ S ) e. V ) ) |
35 |
31 34
|
syl5ibrcom |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) = ( P .\/ Q ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) ) |
36 |
28 35
|
sylbid |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( R .<_ ( P .\/ Q ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) ) |
37 |
36
|
con2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V -> -. R .<_ ( P .\/ Q ) ) ) |
38 |
22 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
39 |
38
|
ad2antll |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> S e. ( Base ` K ) ) |
40 |
22 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
41 |
21 26 24 40
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
42 |
22 1 2
|
latleeqj2 |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) ) ) |
43 |
21 39 41 42
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) ) ) |
44 |
2 3 4
|
3atnelvolN |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> -. ( ( P .\/ Q ) .\/ R ) e. V ) |
45 |
6 29 7 13 44
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> -. ( ( P .\/ Q ) .\/ R ) e. V ) |
46 |
|
eleq1 |
|- ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> ( ( P .\/ Q ) .\/ R ) e. V ) ) |
47 |
46
|
notbid |
|- ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) -> ( -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> -. ( ( P .\/ Q ) .\/ R ) e. V ) ) |
48 |
45 47
|
syl5ibrcom |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ R ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) ) |
49 |
43 48
|
sylbid |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) ) |
50 |
49
|
con2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
51 |
20 37 50
|
3jcad |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) ) |
52 |
1 2 3 4
|
lvoli2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) |
53 |
52
|
3expia |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) ) |
54 |
51 53
|
impbid |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) ) |