Step |
Hyp |
Ref |
Expression |
1 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
2 |
|
fdm |
|- ( F : A --> RR -> dom F = A ) |
3 |
2
|
eleq1d |
|- ( F : A --> RR -> ( dom F e. dom vol <-> A e. dom vol ) ) |
4 |
1 3
|
syl5ib |
|- ( F : A --> RR -> ( F e. MblFn -> A e. dom vol ) ) |
5 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
6 |
|
ioorebas |
|- ( -oo (,) +oo ) e. ran (,) |
7 |
5 6
|
eqeltrri |
|- RR e. ran (,) |
8 |
|
imaeq2 |
|- ( x = RR -> ( `' F " x ) = ( `' F " RR ) ) |
9 |
8
|
eleq1d |
|- ( x = RR -> ( ( `' F " x ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) |
10 |
9
|
rspcv |
|- ( RR e. ran (,) -> ( A. x e. ran (,) ( `' F " x ) e. dom vol -> ( `' F " RR ) e. dom vol ) ) |
11 |
7 10
|
ax-mp |
|- ( A. x e. ran (,) ( `' F " x ) e. dom vol -> ( `' F " RR ) e. dom vol ) |
12 |
|
fimacnv |
|- ( F : A --> RR -> ( `' F " RR ) = A ) |
13 |
12
|
eleq1d |
|- ( F : A --> RR -> ( ( `' F " RR ) e. dom vol <-> A e. dom vol ) ) |
14 |
11 13
|
syl5ib |
|- ( F : A --> RR -> ( A. x e. ran (,) ( `' F " x ) e. dom vol -> A e. dom vol ) ) |
15 |
|
ismbf1 |
|- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
16 |
|
ffvelrn |
|- ( ( F : A --> RR /\ x e. A ) -> ( F ` x ) e. RR ) |
17 |
16
|
adantlr |
|- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( F ` x ) e. RR ) |
18 |
17
|
rered |
|- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( Re ` ( F ` x ) ) = ( F ` x ) ) |
19 |
18
|
mpteq2dva |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( x e. A |-> ( Re ` ( F ` x ) ) ) = ( x e. A |-> ( F ` x ) ) ) |
20 |
17
|
recnd |
|- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( F ` x ) e. CC ) |
21 |
|
simpl |
|- ( ( F : A --> RR /\ A e. dom vol ) -> F : A --> RR ) |
22 |
21
|
feqmptd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> F = ( x e. A |-> ( F ` x ) ) ) |
23 |
|
ref |
|- Re : CC --> RR |
24 |
23
|
a1i |
|- ( ( F : A --> RR /\ A e. dom vol ) -> Re : CC --> RR ) |
25 |
24
|
feqmptd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> Re = ( y e. CC |-> ( Re ` y ) ) ) |
26 |
|
fveq2 |
|- ( y = ( F ` x ) -> ( Re ` y ) = ( Re ` ( F ` x ) ) ) |
27 |
20 22 25 26
|
fmptco |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( Re o. F ) = ( x e. A |-> ( Re ` ( F ` x ) ) ) ) |
28 |
19 27 22
|
3eqtr4rd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> F = ( Re o. F ) ) |
29 |
28
|
cnveqd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> `' F = `' ( Re o. F ) ) |
30 |
29
|
imaeq1d |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' F " x ) = ( `' ( Re o. F ) " x ) ) |
31 |
30
|
eleq1d |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( ( `' F " x ) e. dom vol <-> ( `' ( Re o. F ) " x ) e. dom vol ) ) |
32 |
|
imf |
|- Im : CC --> RR |
33 |
32
|
a1i |
|- ( ( F : A --> RR /\ A e. dom vol ) -> Im : CC --> RR ) |
34 |
33
|
feqmptd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> Im = ( y e. CC |-> ( Im ` y ) ) ) |
35 |
|
fveq2 |
|- ( y = ( F ` x ) -> ( Im ` y ) = ( Im ` ( F ` x ) ) ) |
36 |
20 22 34 35
|
fmptco |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( Im o. F ) = ( x e. A |-> ( Im ` ( F ` x ) ) ) ) |
37 |
17
|
reim0d |
|- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( Im ` ( F ` x ) ) = 0 ) |
38 |
37
|
mpteq2dva |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( x e. A |-> ( Im ` ( F ` x ) ) ) = ( x e. A |-> 0 ) ) |
39 |
36 38
|
eqtrd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( Im o. F ) = ( x e. A |-> 0 ) ) |
40 |
|
fconstmpt |
|- ( A X. { 0 } ) = ( x e. A |-> 0 ) |
41 |
39 40
|
eqtr4di |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( Im o. F ) = ( A X. { 0 } ) ) |
42 |
41
|
cnveqd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> `' ( Im o. F ) = `' ( A X. { 0 } ) ) |
43 |
42
|
imaeq1d |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' ( Im o. F ) " x ) = ( `' ( A X. { 0 } ) " x ) ) |
44 |
|
simpr |
|- ( ( F : A --> RR /\ A e. dom vol ) -> A e. dom vol ) |
45 |
|
0re |
|- 0 e. RR |
46 |
|
mbfconstlem |
|- ( ( A e. dom vol /\ 0 e. RR ) -> ( `' ( A X. { 0 } ) " x ) e. dom vol ) |
47 |
44 45 46
|
sylancl |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' ( A X. { 0 } ) " x ) e. dom vol ) |
48 |
43 47
|
eqeltrd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' ( Im o. F ) " x ) e. dom vol ) |
49 |
48
|
biantrud |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( ( `' ( Re o. F ) " x ) e. dom vol <-> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
50 |
31 49
|
bitrd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( ( `' F " x ) e. dom vol <-> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
51 |
50
|
ralbidv |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( A. x e. ran (,) ( `' F " x ) e. dom vol <-> A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
52 |
|
ax-resscn |
|- RR C_ CC |
53 |
|
fss |
|- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
54 |
52 53
|
mpan2 |
|- ( F : A --> RR -> F : A --> CC ) |
55 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
56 |
|
cnex |
|- CC e. _V |
57 |
|
reex |
|- RR e. _V |
58 |
|
elpm2r |
|- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
59 |
56 57 58
|
mpanl12 |
|- ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
60 |
54 55 59
|
syl2an |
|- ( ( F : A --> RR /\ A e. dom vol ) -> F e. ( CC ^pm RR ) ) |
61 |
60
|
biantrurd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) ) |
62 |
51 61
|
bitrd |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( A. x e. ran (,) ( `' F " x ) e. dom vol <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) ) |
63 |
15 62
|
bitr4id |
|- ( ( F : A --> RR /\ A e. dom vol ) -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
64 |
63
|
ex |
|- ( F : A --> RR -> ( A e. dom vol -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) ) |
65 |
4 14 64
|
pm5.21ndd |
|- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |