| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismbf2d.1 |  |-  ( ph -> F : A --> RR ) | 
						
							| 2 |  | ismbf2d.2 |  |-  ( ph -> A e. dom vol ) | 
						
							| 3 |  | ismbf2d.3 |  |-  ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 4 |  | ismbf2d.4 |  |-  ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 5 |  | elxr |  |-  ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) | 
						
							| 6 |  | oveq1 |  |-  ( x = +oo -> ( x (,) +oo ) = ( +oo (,) +oo ) ) | 
						
							| 7 |  | iooid |  |-  ( +oo (,) +oo ) = (/) | 
						
							| 8 | 6 7 | eqtrdi |  |-  ( x = +oo -> ( x (,) +oo ) = (/) ) | 
						
							| 9 | 8 | imaeq2d |  |-  ( x = +oo -> ( `' F " ( x (,) +oo ) ) = ( `' F " (/) ) ) | 
						
							| 10 |  | ima0 |  |-  ( `' F " (/) ) = (/) | 
						
							| 11 |  | 0mbl |  |-  (/) e. dom vol | 
						
							| 12 | 10 11 | eqeltri |  |-  ( `' F " (/) ) e. dom vol | 
						
							| 13 | 9 12 | eqeltrdi |  |-  ( x = +oo -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x = +oo ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 15 |  | fimacnv |  |-  ( F : A --> RR -> ( `' F " RR ) = A ) | 
						
							| 16 | 1 15 | syl |  |-  ( ph -> ( `' F " RR ) = A ) | 
						
							| 17 | 16 2 | eqeltrd |  |-  ( ph -> ( `' F " RR ) e. dom vol ) | 
						
							| 18 |  | oveq1 |  |-  ( x = -oo -> ( x (,) +oo ) = ( -oo (,) +oo ) ) | 
						
							| 19 |  | ioomax |  |-  ( -oo (,) +oo ) = RR | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( x = -oo -> ( x (,) +oo ) = RR ) | 
						
							| 21 | 20 | imaeq2d |  |-  ( x = -oo -> ( `' F " ( x (,) +oo ) ) = ( `' F " RR ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( x = -oo -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) | 
						
							| 23 | 17 22 | syl5ibrcom |  |-  ( ph -> ( x = -oo -> ( `' F " ( x (,) +oo ) ) e. dom vol ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ph /\ x = -oo ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 25 | 3 14 24 | 3jaodan |  |-  ( ( ph /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 26 | 5 25 | sylan2b |  |-  ( ( ph /\ x e. RR* ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 27 |  | oveq2 |  |-  ( x = +oo -> ( -oo (,) x ) = ( -oo (,) +oo ) ) | 
						
							| 28 | 27 19 | eqtrdi |  |-  ( x = +oo -> ( -oo (,) x ) = RR ) | 
						
							| 29 | 28 | imaeq2d |  |-  ( x = +oo -> ( `' F " ( -oo (,) x ) ) = ( `' F " RR ) ) | 
						
							| 30 | 29 | eleq1d |  |-  ( x = +oo -> ( ( `' F " ( -oo (,) x ) ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) | 
						
							| 31 | 17 30 | syl5ibrcom |  |-  ( ph -> ( x = +oo -> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ph /\ x = +oo ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 33 |  | oveq2 |  |-  ( x = -oo -> ( -oo (,) x ) = ( -oo (,) -oo ) ) | 
						
							| 34 |  | iooid |  |-  ( -oo (,) -oo ) = (/) | 
						
							| 35 | 33 34 | eqtrdi |  |-  ( x = -oo -> ( -oo (,) x ) = (/) ) | 
						
							| 36 | 35 | imaeq2d |  |-  ( x = -oo -> ( `' F " ( -oo (,) x ) ) = ( `' F " (/) ) ) | 
						
							| 37 | 36 12 | eqeltrdi |  |-  ( x = -oo -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ x = -oo ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 39 | 4 32 38 | 3jaodan |  |-  ( ( ph /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 40 | 5 39 | sylan2b |  |-  ( ( ph /\ x e. RR* ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 41 | 1 26 40 | ismbfd |  |-  ( ph -> F e. MblFn ) |