Step |
Hyp |
Ref |
Expression |
1 |
|
ismbf2d.1 |
|- ( ph -> F : A --> RR ) |
2 |
|
ismbf2d.2 |
|- ( ph -> A e. dom vol ) |
3 |
|
ismbf2d.3 |
|- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
4 |
|
ismbf2d.4 |
|- ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
5 |
|
elxr |
|- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
6 |
|
oveq1 |
|- ( x = +oo -> ( x (,) +oo ) = ( +oo (,) +oo ) ) |
7 |
|
iooid |
|- ( +oo (,) +oo ) = (/) |
8 |
6 7
|
eqtrdi |
|- ( x = +oo -> ( x (,) +oo ) = (/) ) |
9 |
8
|
imaeq2d |
|- ( x = +oo -> ( `' F " ( x (,) +oo ) ) = ( `' F " (/) ) ) |
10 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
11 |
|
0mbl |
|- (/) e. dom vol |
12 |
10 11
|
eqeltri |
|- ( `' F " (/) ) e. dom vol |
13 |
9 12
|
eqeltrdi |
|- ( x = +oo -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
14 |
13
|
adantl |
|- ( ( ph /\ x = +oo ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
15 |
|
fimacnv |
|- ( F : A --> RR -> ( `' F " RR ) = A ) |
16 |
1 15
|
syl |
|- ( ph -> ( `' F " RR ) = A ) |
17 |
16 2
|
eqeltrd |
|- ( ph -> ( `' F " RR ) e. dom vol ) |
18 |
|
oveq1 |
|- ( x = -oo -> ( x (,) +oo ) = ( -oo (,) +oo ) ) |
19 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
20 |
18 19
|
eqtrdi |
|- ( x = -oo -> ( x (,) +oo ) = RR ) |
21 |
20
|
imaeq2d |
|- ( x = -oo -> ( `' F " ( x (,) +oo ) ) = ( `' F " RR ) ) |
22 |
21
|
eleq1d |
|- ( x = -oo -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) |
23 |
17 22
|
syl5ibrcom |
|- ( ph -> ( x = -oo -> ( `' F " ( x (,) +oo ) ) e. dom vol ) ) |
24 |
23
|
imp |
|- ( ( ph /\ x = -oo ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
25 |
3 14 24
|
3jaodan |
|- ( ( ph /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
26 |
5 25
|
sylan2b |
|- ( ( ph /\ x e. RR* ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
27 |
|
oveq2 |
|- ( x = +oo -> ( -oo (,) x ) = ( -oo (,) +oo ) ) |
28 |
27 19
|
eqtrdi |
|- ( x = +oo -> ( -oo (,) x ) = RR ) |
29 |
28
|
imaeq2d |
|- ( x = +oo -> ( `' F " ( -oo (,) x ) ) = ( `' F " RR ) ) |
30 |
29
|
eleq1d |
|- ( x = +oo -> ( ( `' F " ( -oo (,) x ) ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) |
31 |
17 30
|
syl5ibrcom |
|- ( ph -> ( x = +oo -> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) |
32 |
31
|
imp |
|- ( ( ph /\ x = +oo ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
33 |
|
oveq2 |
|- ( x = -oo -> ( -oo (,) x ) = ( -oo (,) -oo ) ) |
34 |
|
iooid |
|- ( -oo (,) -oo ) = (/) |
35 |
33 34
|
eqtrdi |
|- ( x = -oo -> ( -oo (,) x ) = (/) ) |
36 |
35
|
imaeq2d |
|- ( x = -oo -> ( `' F " ( -oo (,) x ) ) = ( `' F " (/) ) ) |
37 |
36 12
|
eqeltrdi |
|- ( x = -oo -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
38 |
37
|
adantl |
|- ( ( ph /\ x = -oo ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
39 |
4 32 38
|
3jaodan |
|- ( ( ph /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
40 |
5 39
|
sylan2b |
|- ( ( ph /\ x e. RR* ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
41 |
1 26 40
|
ismbfd |
|- ( ph -> F e. MblFn ) |