| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismbf3d.1 |  |-  ( ph -> F : A --> RR ) | 
						
							| 2 |  | ismbf3d.2 |  |-  ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 3 |  | fimacnv |  |-  ( F : A --> RR -> ( `' F " RR ) = A ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> ( `' F " RR ) = A ) | 
						
							| 5 |  | imaiun |  |-  ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = U_ y e. NN ( `' F " ( -u y (,) +oo ) ) | 
						
							| 6 |  | ioossre |  |-  ( -u y (,) +oo ) C_ RR | 
						
							| 7 | 6 | rgenw |  |-  A. y e. NN ( -u y (,) +oo ) C_ RR | 
						
							| 8 |  | iunss |  |-  ( U_ y e. NN ( -u y (,) +oo ) C_ RR <-> A. y e. NN ( -u y (,) +oo ) C_ RR ) | 
						
							| 9 | 7 8 | mpbir |  |-  U_ y e. NN ( -u y (,) +oo ) C_ RR | 
						
							| 10 |  | renegcl |  |-  ( z e. RR -> -u z e. RR ) | 
						
							| 11 |  | arch |  |-  ( -u z e. RR -> E. y e. NN -u z < y ) | 
						
							| 12 | 10 11 | syl |  |-  ( z e. RR -> E. y e. NN -u z < y ) | 
						
							| 13 |  | simpl |  |-  ( ( z e. RR /\ y e. NN ) -> z e. RR ) | 
						
							| 14 | 13 | biantrurd |  |-  ( ( z e. RR /\ y e. NN ) -> ( -u y < z <-> ( z e. RR /\ -u y < z ) ) ) | 
						
							| 15 |  | nnre |  |-  ( y e. NN -> y e. RR ) | 
						
							| 16 |  | ltnegcon1 |  |-  ( ( z e. RR /\ y e. RR ) -> ( -u z < y <-> -u y < z ) ) | 
						
							| 17 | 15 16 | sylan2 |  |-  ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> -u y < z ) ) | 
						
							| 18 | 15 | adantl |  |-  ( ( z e. RR /\ y e. NN ) -> y e. RR ) | 
						
							| 19 | 18 | renegcld |  |-  ( ( z e. RR /\ y e. NN ) -> -u y e. RR ) | 
						
							| 20 | 19 | rexrd |  |-  ( ( z e. RR /\ y e. NN ) -> -u y e. RR* ) | 
						
							| 21 |  | elioopnf |  |-  ( -u y e. RR* -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( z e. RR /\ y e. NN ) -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) | 
						
							| 23 | 14 17 22 | 3bitr4d |  |-  ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> z e. ( -u y (,) +oo ) ) ) | 
						
							| 24 | 23 | rexbidva |  |-  ( z e. RR -> ( E. y e. NN -u z < y <-> E. y e. NN z e. ( -u y (,) +oo ) ) ) | 
						
							| 25 | 12 24 | mpbid |  |-  ( z e. RR -> E. y e. NN z e. ( -u y (,) +oo ) ) | 
						
							| 26 |  | eliun |  |-  ( z e. U_ y e. NN ( -u y (,) +oo ) <-> E. y e. NN z e. ( -u y (,) +oo ) ) | 
						
							| 27 | 25 26 | sylibr |  |-  ( z e. RR -> z e. U_ y e. NN ( -u y (,) +oo ) ) | 
						
							| 28 | 27 | ssriv |  |-  RR C_ U_ y e. NN ( -u y (,) +oo ) | 
						
							| 29 | 9 28 | eqssi |  |-  U_ y e. NN ( -u y (,) +oo ) = RR | 
						
							| 30 | 29 | imaeq2i |  |-  ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = ( `' F " RR ) | 
						
							| 31 | 5 30 | eqtr3i |  |-  U_ y e. NN ( `' F " ( -u y (,) +oo ) ) = ( `' F " RR ) | 
						
							| 32 | 2 | ralrimiva |  |-  ( ph -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 33 | 15 | renegcld |  |-  ( y e. NN -> -u y e. RR ) | 
						
							| 34 |  | oveq1 |  |-  ( x = -u y -> ( x (,) +oo ) = ( -u y (,) +oo ) ) | 
						
							| 35 | 34 | imaeq2d |  |-  ( x = -u y -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( -u y (,) +oo ) ) ) | 
						
							| 36 | 35 | eleq1d |  |-  ( x = -u y -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) ) | 
						
							| 37 | 36 | rspccva |  |-  ( ( A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol /\ -u y e. RR ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) | 
						
							| 38 | 32 33 37 | syl2an |  |-  ( ( ph /\ y e. NN ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) | 
						
							| 39 | 38 | ralrimiva |  |-  ( ph -> A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) | 
						
							| 40 |  | iunmbl |  |-  ( A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) | 
						
							| 42 | 31 41 | eqeltrrid |  |-  ( ph -> ( `' F " RR ) e. dom vol ) | 
						
							| 43 | 4 42 | eqeltrrd |  |-  ( ph -> A e. dom vol ) | 
						
							| 44 |  | imaiun |  |-  ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) | 
						
							| 45 |  | eliun |  |-  ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) | 
						
							| 46 |  | 3simpb |  |-  ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) ) | 
						
							| 47 |  | simplr |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> z e. RR ) | 
						
							| 48 |  | nnrp |  |-  ( y e. NN -> y e. RR+ ) | 
						
							| 49 | 48 | ad2antrl |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> y e. RR+ ) | 
						
							| 50 | 49 | rpreccld |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( 1 / y ) e. RR+ ) | 
						
							| 51 | 47 50 | ltsubrpd |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) < z ) | 
						
							| 52 |  | simprr |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> x e. RR ) | 
						
							| 53 |  | simpr |  |-  ( ( ph /\ z e. RR ) -> z e. RR ) | 
						
							| 54 |  | nnrecre |  |-  ( y e. NN -> ( 1 / y ) e. RR ) | 
						
							| 55 |  | resubcl |  |-  ( ( z e. RR /\ ( 1 / y ) e. RR ) -> ( z - ( 1 / y ) ) e. RR ) | 
						
							| 56 | 53 54 55 | syl2an |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR ) | 
						
							| 57 | 56 | adantrr |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) e. RR ) | 
						
							| 58 |  | lelttr |  |-  ( ( x e. RR /\ ( z - ( 1 / y ) ) e. RR /\ z e. RR ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) | 
						
							| 59 | 52 57 47 58 | syl3anc |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) | 
						
							| 60 | 51 59 | mpan2d |  |-  ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) | 
						
							| 61 | 60 | anassrs |  |-  ( ( ( ( ph /\ z e. RR ) /\ y e. NN ) /\ x e. RR ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) | 
						
							| 62 | 61 | imdistanda |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) | 
						
							| 63 | 46 62 | syl5 |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) | 
						
							| 64 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 65 |  | elioc2 |  |-  ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) | 
						
							| 66 | 64 56 65 | sylancr |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) | 
						
							| 67 |  | rexr |  |-  ( z e. RR -> z e. RR* ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ph /\ z e. RR ) -> z e. RR* ) | 
						
							| 69 |  | elioomnf |  |-  ( z e. RR* -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( ph /\ z e. RR ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) | 
						
							| 72 | 63 66 71 | 3imtr4d |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) | 
						
							| 73 | 72 | rexlimdva |  |-  ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) | 
						
							| 74 | 73 70 | sylibd |  |-  ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) | 
						
							| 75 |  | simprl |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x e. RR ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. RR ) | 
						
							| 77 | 76 | mnfltd |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> -oo < x ) | 
						
							| 78 | 56 | ad2ant2r |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( z - ( 1 / y ) ) e. RR ) | 
						
							| 79 | 54 | ad2antrl |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) e. RR ) | 
						
							| 80 |  | simplr |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> z e. RR ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> z e. RR ) | 
						
							| 82 |  | simprr |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) < ( z - x ) ) | 
						
							| 83 | 79 81 76 82 | ltsub13d |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x < ( z - ( 1 / y ) ) ) | 
						
							| 84 | 76 78 83 | ltled |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x <_ ( z - ( 1 / y ) ) ) | 
						
							| 85 | 66 | ad2ant2r |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) | 
						
							| 86 | 76 77 84 85 | mpbir3and |  |-  ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) | 
						
							| 87 | 80 75 | resubcld |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( z - x ) e. RR ) | 
						
							| 88 |  | simprr |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x < z ) | 
						
							| 89 | 75 80 | posdifd |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( x < z <-> 0 < ( z - x ) ) ) | 
						
							| 90 | 88 89 | mpbid |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> 0 < ( z - x ) ) | 
						
							| 91 |  | nnrecl |  |-  ( ( ( z - x ) e. RR /\ 0 < ( z - x ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) | 
						
							| 92 | 87 90 91 | syl2anc |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) | 
						
							| 93 | 86 92 | reximddv |  |-  ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) | 
						
							| 94 | 93 | ex |  |-  ( ( ph /\ z e. RR ) -> ( ( x e. RR /\ x < z ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) ) | 
						
							| 95 | 74 94 | impbid |  |-  ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ x < z ) ) ) | 
						
							| 96 | 95 70 | bitr4d |  |-  ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) | 
						
							| 97 | 45 96 | bitrid |  |-  ( ( ph /\ z e. RR ) -> ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) | 
						
							| 98 | 97 | eqrdv |  |-  ( ( ph /\ z e. RR ) -> U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) = ( -oo (,) z ) ) | 
						
							| 99 | 98 | imaeq2d |  |-  ( ( ph /\ z e. RR ) -> ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) | 
						
							| 100 | 44 99 | eqtr3id |  |-  ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) | 
						
							| 101 | 1 | ad2antrr |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> F : A --> RR ) | 
						
							| 102 |  | ffun |  |-  ( F : A --> RR -> Fun F ) | 
						
							| 103 |  | funcnvcnv |  |-  ( Fun F -> Fun `' `' F ) | 
						
							| 104 |  | imadif |  |-  ( Fun `' `' F -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) | 
						
							| 105 | 101 102 103 104 | 4syl |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) | 
						
							| 106 | 64 | a1i |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo e. RR* ) | 
						
							| 107 | 56 | rexrd |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR* ) | 
						
							| 108 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 109 | 108 | a1i |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> +oo e. RR* ) | 
						
							| 110 | 56 | mnfltd |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo < ( z - ( 1 / y ) ) ) | 
						
							| 111 | 56 | ltpnfd |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) < +oo ) | 
						
							| 112 |  | df-ioc |  |-  (,] = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w <_ v ) } ) | 
						
							| 113 |  | df-ioo |  |-  (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) | 
						
							| 114 |  | xrltnle |  |-  ( ( ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( z - ( 1 / y ) ) < x <-> -. x <_ ( z - ( 1 / y ) ) ) ) | 
						
							| 115 |  | xrlelttr |  |-  ( ( x e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) -> x < +oo ) ) | 
						
							| 116 |  | xrlttr |  |-  ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < x ) -> -oo < x ) ) | 
						
							| 117 | 112 113 114 113 115 116 | ixxun |  |-  ( ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) /\ ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) | 
						
							| 118 | 106 107 109 110 111 117 | syl32anc |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) | 
						
							| 119 |  | uncom |  |-  ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) | 
						
							| 120 |  | ioomax |  |-  ( -oo (,) +oo ) = RR | 
						
							| 121 | 118 119 120 | 3eqtr3g |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR ) | 
						
							| 122 |  | ioossre |  |-  ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR | 
						
							| 123 |  | incom |  |-  ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) | 
						
							| 124 | 112 113 114 | ixxdisj |  |-  ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) | 
						
							| 125 | 64 108 124 | mp3an13 |  |-  ( ( z - ( 1 / y ) ) e. RR* -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) | 
						
							| 126 | 107 125 | syl |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) | 
						
							| 127 | 123 126 | eqtrid |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) | 
						
							| 128 |  | uneqdifeq |  |-  ( ( ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR /\ ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) | 
						
							| 129 | 122 127 128 | sylancr |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) | 
						
							| 130 | 121 129 | mpbid |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) | 
						
							| 131 | 130 | imaeq2d |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) | 
						
							| 132 | 105 131 | eqtr3d |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) | 
						
							| 133 | 42 | ad2antrr |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " RR ) e. dom vol ) | 
						
							| 134 |  | oveq1 |  |-  ( x = ( z - ( 1 / y ) ) -> ( x (,) +oo ) = ( ( z - ( 1 / y ) ) (,) +oo ) ) | 
						
							| 135 | 134 | imaeq2d |  |-  ( x = ( z - ( 1 / y ) ) -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) | 
						
							| 136 | 135 | eleq1d |  |-  ( x = ( z - ( 1 / y ) ) -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) ) | 
						
							| 137 | 32 | ad2antrr |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) | 
						
							| 138 | 136 137 56 | rspcdva |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) | 
						
							| 139 |  | difmbl |  |-  ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) | 
						
							| 140 | 133 138 139 | syl2anc |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) | 
						
							| 141 | 132 140 | eqeltrrd |  |-  ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) | 
						
							| 142 | 141 | ralrimiva |  |-  ( ( ph /\ z e. RR ) -> A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) | 
						
							| 143 |  | iunmbl |  |-  ( A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) | 
						
							| 144 | 142 143 | syl |  |-  ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) | 
						
							| 145 | 100 144 | eqeltrrd |  |-  ( ( ph /\ z e. RR ) -> ( `' F " ( -oo (,) z ) ) e. dom vol ) | 
						
							| 146 | 145 | ralrimiva |  |-  ( ph -> A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol ) | 
						
							| 147 |  | oveq2 |  |-  ( z = x -> ( -oo (,) z ) = ( -oo (,) x ) ) | 
						
							| 148 | 147 | imaeq2d |  |-  ( z = x -> ( `' F " ( -oo (,) z ) ) = ( `' F " ( -oo (,) x ) ) ) | 
						
							| 149 | 148 | eleq1d |  |-  ( z = x -> ( ( `' F " ( -oo (,) z ) ) e. dom vol <-> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) | 
						
							| 150 | 149 | cbvralvw |  |-  ( A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol <-> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 151 | 146 150 | sylib |  |-  ( ph -> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 152 | 151 | r19.21bi |  |-  ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) | 
						
							| 153 | 1 43 2 152 | ismbf2d |  |-  ( ph -> F e. MblFn ) |