| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ineq2 |
|- ( y = A -> ( x i^i y ) = ( x i^i A ) ) |
| 2 |
1
|
fveq2d |
|- ( y = A -> ( vol* ` ( x i^i y ) ) = ( vol* ` ( x i^i A ) ) ) |
| 3 |
|
difeq2 |
|- ( y = A -> ( x \ y ) = ( x \ A ) ) |
| 4 |
3
|
fveq2d |
|- ( y = A -> ( vol* ` ( x \ y ) ) = ( vol* ` ( x \ A ) ) ) |
| 5 |
2 4
|
oveq12d |
|- ( y = A -> ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 6 |
5
|
eqeq2d |
|- ( y = A -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) <-> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 7 |
6
|
ralbidv |
|- ( y = A -> ( A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) <-> A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 8 |
|
df-vol |
|- vol = ( vol* |` { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } ) |
| 9 |
8
|
dmeqi |
|- dom vol = dom ( vol* |` { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } ) |
| 10 |
|
dmres |
|- dom ( vol* |` { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } ) = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i dom vol* ) |
| 11 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
| 12 |
11
|
fdmi |
|- dom vol* = ~P RR |
| 13 |
12
|
ineq2i |
|- ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i dom vol* ) = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i ~P RR ) |
| 14 |
9 10 13
|
3eqtri |
|- dom vol = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i ~P RR ) |
| 15 |
|
dfrab2 |
|- { y e. ~P RR | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i ~P RR ) |
| 16 |
14 15
|
eqtr4i |
|- dom vol = { y e. ~P RR | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } |
| 17 |
7 16
|
elrab2 |
|- ( A e. dom vol <-> ( A e. ~P RR /\ A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 18 |
|
reex |
|- RR e. _V |
| 19 |
18
|
elpw2 |
|- ( A e. ~P RR <-> A C_ RR ) |
| 20 |
|
ffn |
|- ( vol* : ~P RR --> ( 0 [,] +oo ) -> vol* Fn ~P RR ) |
| 21 |
|
elpreima |
|- ( vol* Fn ~P RR -> ( x e. ( `' vol* " RR ) <-> ( x e. ~P RR /\ ( vol* ` x ) e. RR ) ) ) |
| 22 |
11 20 21
|
mp2b |
|- ( x e. ( `' vol* " RR ) <-> ( x e. ~P RR /\ ( vol* ` x ) e. RR ) ) |
| 23 |
22
|
imbi1i |
|- ( ( x e. ( `' vol* " RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 24 |
|
impexp |
|- ( ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( x e. ~P RR -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
| 25 |
23 24
|
bitri |
|- ( ( x e. ( `' vol* " RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( x e. ~P RR -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
| 26 |
25
|
ralbii2 |
|- ( A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <-> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 27 |
19 26
|
anbi12i |
|- ( ( A e. ~P RR /\ A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
| 28 |
17 27
|
bitri |
|- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |