| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismbl2 |
|- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 2 |
|
inss1 |
|- ( x i^i A ) C_ x |
| 3 |
2
|
a1i |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( x i^i A ) C_ x ) |
| 4 |
|
elpwi |
|- ( x e. ~P RR -> x C_ RR ) |
| 5 |
4
|
adantr |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
| 6 |
|
simpr |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) |
| 7 |
|
ovolsscl |
|- ( ( ( x i^i A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 8 |
3 5 6 7
|
syl3anc |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 9 |
|
difssd |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( x \ A ) C_ x ) |
| 10 |
|
ovolsscl |
|- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 11 |
9 5 6 10
|
syl3anc |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 12 |
8 11
|
rexaddd |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 13 |
12
|
adantlr |
|- ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 14 |
|
id |
|- ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 15 |
14
|
imp |
|- ( ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 16 |
15
|
adantll |
|- ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 17 |
13 16
|
eqbrtrd |
|- ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 18 |
2 4
|
sstrid |
|- ( x e. ~P RR -> ( x i^i A ) C_ RR ) |
| 19 |
|
ovolcl |
|- ( ( x i^i A ) C_ RR -> ( vol* ` ( x i^i A ) ) e. RR* ) |
| 20 |
18 19
|
syl |
|- ( x e. ~P RR -> ( vol* ` ( x i^i A ) ) e. RR* ) |
| 21 |
4
|
ssdifssd |
|- ( x e. ~P RR -> ( x \ A ) C_ RR ) |
| 22 |
|
ovolcl |
|- ( ( x \ A ) C_ RR -> ( vol* ` ( x \ A ) ) e. RR* ) |
| 23 |
21 22
|
syl |
|- ( x e. ~P RR -> ( vol* ` ( x \ A ) ) e. RR* ) |
| 24 |
20 23
|
xaddcld |
|- ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* ) |
| 25 |
|
pnfge |
|- ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ +oo ) |
| 26 |
24 25
|
syl |
|- ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ +oo ) |
| 27 |
26
|
adantr |
|- ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ +oo ) |
| 28 |
|
ovolf |
|- vol* : ~P RR --> ( 0 [,] +oo ) |
| 29 |
28
|
ffvelcdmi |
|- ( x e. ~P RR -> ( vol* ` x ) e. ( 0 [,] +oo ) ) |
| 30 |
29
|
adantr |
|- ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. ( 0 [,] +oo ) ) |
| 31 |
|
simpr |
|- ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> -. ( vol* ` x ) e. RR ) |
| 32 |
|
xrge0nre |
|- ( ( ( vol* ` x ) e. ( 0 [,] +oo ) /\ -. ( vol* ` x ) e. RR ) -> ( vol* ` x ) = +oo ) |
| 33 |
30 31 32
|
syl2anc |
|- ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( vol* ` x ) = +oo ) |
| 34 |
33
|
eqcomd |
|- ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> +oo = ( vol* ` x ) ) |
| 35 |
27 34
|
breqtrd |
|- ( ( x e. ~P RR /\ -. ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 36 |
35
|
adantlr |
|- ( ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) /\ -. ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 37 |
17 36
|
pm2.61dan |
|- ( ( x e. ~P RR /\ ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 38 |
37
|
ex |
|- ( x e. ~P RR -> ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 39 |
12
|
eqcomd |
|- ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
| 40 |
39
|
3adant2 |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
| 41 |
|
simp2 |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 42 |
40 41
|
eqbrtrd |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 43 |
42
|
3exp |
|- ( x e. ~P RR -> ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 44 |
38 43
|
impbid |
|- ( x e. ~P RR -> ( ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) <-> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 45 |
44
|
ralbiia |
|- ( A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) <-> A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 46 |
45
|
anbi2i |
|- ( ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 47 |
1 46
|
bitri |
|- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |