Step |
Hyp |
Ref |
Expression |
1 |
|
ismbl3 |
|- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
2 |
|
elpwi |
|- ( x e. ~P RR -> x C_ RR ) |
3 |
|
ovolcl |
|- ( x C_ RR -> ( vol* ` x ) e. RR* ) |
4 |
2 3
|
syl |
|- ( x e. ~P RR -> ( vol* ` x ) e. RR* ) |
5 |
4
|
adantr |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( vol* ` x ) e. RR* ) |
6 |
|
inss1 |
|- ( x i^i A ) C_ x |
7 |
6 2
|
sstrid |
|- ( x e. ~P RR -> ( x i^i A ) C_ RR ) |
8 |
|
ovolcl |
|- ( ( x i^i A ) C_ RR -> ( vol* ` ( x i^i A ) ) e. RR* ) |
9 |
7 8
|
syl |
|- ( x e. ~P RR -> ( vol* ` ( x i^i A ) ) e. RR* ) |
10 |
2
|
ssdifssd |
|- ( x e. ~P RR -> ( x \ A ) C_ RR ) |
11 |
|
ovolcl |
|- ( ( x \ A ) C_ RR -> ( vol* ` ( x \ A ) ) e. RR* ) |
12 |
10 11
|
syl |
|- ( x e. ~P RR -> ( vol* ` ( x \ A ) ) e. RR* ) |
13 |
9 12
|
xaddcld |
|- ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* ) |
14 |
13
|
adantr |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) e. RR* ) |
15 |
2
|
ovolsplit |
|- ( x e. ~P RR -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
16 |
15
|
adantr |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
17 |
|
simpr |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
18 |
5 14 16 17
|
xrletrid |
|- ( ( x e. ~P RR /\ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
19 |
18
|
ex |
|- ( x e. ~P RR -> ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) |
20 |
13
|
xrleidd |
|- ( x e. ~P RR -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
21 |
20
|
adantr |
|- ( ( x e. ~P RR /\ ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
22 |
|
id |
|- ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
23 |
22
|
eqcomd |
|- ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( vol* ` x ) ) |
24 |
23
|
adantl |
|- ( ( x e. ~P RR /\ ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) = ( vol* ` x ) ) |
25 |
21 24
|
breqtrd |
|- ( ( x e. ~P RR /\ ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
26 |
25
|
ex |
|- ( x e. ~P RR -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) -> ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
27 |
19 26
|
impbid |
|- ( x e. ~P RR -> ( ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) <-> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) |
28 |
27
|
ralbiia |
|- ( A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) <-> A. x e. ~P RR ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) |
29 |
28
|
anbi2i |
|- ( ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) |
30 |
1 29
|
bitri |
|- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) +e ( vol* ` ( x \ A ) ) ) ) ) |