Step |
Hyp |
Ref |
Expression |
1 |
|
ismgmid.b |
|- B = ( Base ` G ) |
2 |
|
ismgmid.o |
|- .0. = ( 0g ` G ) |
3 |
|
ismgmid.p |
|- .+ = ( +g ` G ) |
4 |
|
ismgmid2.u |
|- ( ph -> U e. B ) |
5 |
|
ismgmid2.l |
|- ( ( ph /\ x e. B ) -> ( U .+ x ) = x ) |
6 |
|
ismgmid2.r |
|- ( ( ph /\ x e. B ) -> ( x .+ U ) = x ) |
7 |
5 6
|
jca |
|- ( ( ph /\ x e. B ) -> ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) |
8 |
7
|
ralrimiva |
|- ( ph -> A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) |
9 |
|
oveq1 |
|- ( e = U -> ( e .+ x ) = ( U .+ x ) ) |
10 |
9
|
eqeq1d |
|- ( e = U -> ( ( e .+ x ) = x <-> ( U .+ x ) = x ) ) |
11 |
10
|
ovanraleqv |
|- ( e = U -> ( A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) <-> A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) ) |
12 |
11
|
rspcev |
|- ( ( U e. B /\ A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
13 |
4 8 12
|
syl2anc |
|- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
14 |
1 2 3 13
|
ismgmid |
|- ( ph -> ( ( U e. B /\ A. x e. B ( ( U .+ x ) = x /\ ( x .+ U ) = x ) ) <-> .0. = U ) ) |
15 |
4 8 14
|
mpbi2and |
|- ( ph -> .0. = U ) |
16 |
15
|
eqcomd |
|- ( ph -> U = .0. ) |