Metamath Proof Explorer


Theorem ismgmn0

Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses ismgmn0.b
|- B = ( Base ` M )
ismgmn0.o
|- .o. = ( +g ` M )
Assertion ismgmn0
|- ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) )

Proof

Step Hyp Ref Expression
1 ismgmn0.b
 |-  B = ( Base ` M )
2 ismgmn0.o
 |-  .o. = ( +g ` M )
3 1 eleq2i
 |-  ( A e. B <-> A e. ( Base ` M ) )
4 3 biimpi
 |-  ( A e. B -> A e. ( Base ` M ) )
5 4 elfvexd
 |-  ( A e. B -> M e. _V )
6 1 2 ismgm
 |-  ( M e. _V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) )
7 5 6 syl
 |-  ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) )