Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmn0.b | |- B = ( Base ` M ) |
|
| ismgmn0.o | |- .o. = ( +g ` M ) |
||
| Assertion | ismgmn0 | |- ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmn0.b | |- B = ( Base ` M ) |
|
| 2 | ismgmn0.o | |- .o. = ( +g ` M ) |
|
| 3 | 1 | eleq2i | |- ( A e. B <-> A e. ( Base ` M ) ) |
| 4 | 3 | biimpi | |- ( A e. B -> A e. ( Base ` M ) ) |
| 5 | 4 | elfvexd | |- ( A e. B -> M e. _V ) |
| 6 | 1 2 | ismgm | |- ( M e. _V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |
| 7 | 5 6 | syl | |- ( A e. B -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |