Step |
Hyp |
Ref |
Expression |
1 |
|
ismnddef.b |
|- B = ( Base ` G ) |
2 |
|
ismnddef.p |
|- .+ = ( +g ` G ) |
3 |
|
fvex |
|- ( Base ` g ) e. _V |
4 |
|
fvex |
|- ( +g ` g ) e. _V |
5 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = B ) |
7 |
6
|
eqeq2d |
|- ( g = G -> ( b = ( Base ` g ) <-> b = B ) ) |
8 |
|
fveq2 |
|- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
9 |
8 2
|
eqtr4di |
|- ( g = G -> ( +g ` g ) = .+ ) |
10 |
9
|
eqeq2d |
|- ( g = G -> ( p = ( +g ` g ) <-> p = .+ ) ) |
11 |
7 10
|
anbi12d |
|- ( g = G -> ( ( b = ( Base ` g ) /\ p = ( +g ` g ) ) <-> ( b = B /\ p = .+ ) ) ) |
12 |
|
simpl |
|- ( ( b = B /\ p = .+ ) -> b = B ) |
13 |
|
oveq |
|- ( p = .+ -> ( e p a ) = ( e .+ a ) ) |
14 |
13
|
eqeq1d |
|- ( p = .+ -> ( ( e p a ) = a <-> ( e .+ a ) = a ) ) |
15 |
|
oveq |
|- ( p = .+ -> ( a p e ) = ( a .+ e ) ) |
16 |
15
|
eqeq1d |
|- ( p = .+ -> ( ( a p e ) = a <-> ( a .+ e ) = a ) ) |
17 |
14 16
|
anbi12d |
|- ( p = .+ -> ( ( ( e p a ) = a /\ ( a p e ) = a ) <-> ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) |
18 |
17
|
adantl |
|- ( ( b = B /\ p = .+ ) -> ( ( ( e p a ) = a /\ ( a p e ) = a ) <-> ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) |
19 |
12 18
|
raleqbidv |
|- ( ( b = B /\ p = .+ ) -> ( A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) <-> A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) |
20 |
12 19
|
rexeqbidv |
|- ( ( b = B /\ p = .+ ) -> ( E. e e. b A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) <-> E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) |
21 |
11 20
|
syl6bi |
|- ( g = G -> ( ( b = ( Base ` g ) /\ p = ( +g ` g ) ) -> ( E. e e. b A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) <-> E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) ) |
22 |
3 4 21
|
sbc2iedv |
|- ( g = G -> ( [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) <-> E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) |
23 |
|
df-mnd |
|- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) } |
24 |
22 23
|
elrab2 |
|- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) |