Step |
Hyp |
Ref |
Expression |
1 |
|
ismred.ss |
|- ( ph -> C C_ ~P X ) |
2 |
|
ismred.ba |
|- ( ph -> X e. C ) |
3 |
|
ismred.in |
|- ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C ) |
4 |
|
velpw |
|- ( s e. ~P C <-> s C_ C ) |
5 |
3
|
3expia |
|- ( ( ph /\ s C_ C ) -> ( s =/= (/) -> |^| s e. C ) ) |
6 |
4 5
|
sylan2b |
|- ( ( ph /\ s e. ~P C ) -> ( s =/= (/) -> |^| s e. C ) ) |
7 |
6
|
ralrimiva |
|- ( ph -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) |
8 |
|
ismre |
|- ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) |
9 |
1 2 7 8
|
syl3anbrc |
|- ( ph -> C e. ( Moore ` X ) ) |