Metamath Proof Explorer


Theorem ismred2

Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Hypotheses ismred2.ss
|- ( ph -> C C_ ~P X )
ismred2.in
|- ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C )
Assertion ismred2
|- ( ph -> C e. ( Moore ` X ) )

Proof

Step Hyp Ref Expression
1 ismred2.ss
 |-  ( ph -> C C_ ~P X )
2 ismred2.in
 |-  ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C )
3 eqid
 |-  (/) = (/)
4 rint0
 |-  ( (/) = (/) -> ( X i^i |^| (/) ) = X )
5 3 4 ax-mp
 |-  ( X i^i |^| (/) ) = X
6 0ss
 |-  (/) C_ C
7 0ex
 |-  (/) e. _V
8 sseq1
 |-  ( s = (/) -> ( s C_ C <-> (/) C_ C ) )
9 8 anbi2d
 |-  ( s = (/) -> ( ( ph /\ s C_ C ) <-> ( ph /\ (/) C_ C ) ) )
10 inteq
 |-  ( s = (/) -> |^| s = |^| (/) )
11 10 ineq2d
 |-  ( s = (/) -> ( X i^i |^| s ) = ( X i^i |^| (/) ) )
12 11 eleq1d
 |-  ( s = (/) -> ( ( X i^i |^| s ) e. C <-> ( X i^i |^| (/) ) e. C ) )
13 9 12 imbi12d
 |-  ( s = (/) -> ( ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) <-> ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C ) ) )
14 7 13 2 vtocl
 |-  ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C )
15 6 14 mpan2
 |-  ( ph -> ( X i^i |^| (/) ) e. C )
16 5 15 eqeltrrid
 |-  ( ph -> X e. C )
17 simp2
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ C )
18 1 3ad2ant1
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> C C_ ~P X )
19 17 18 sstrd
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ ~P X )
20 simp3
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s =/= (/) )
21 rintn0
 |-  ( ( s C_ ~P X /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s )
22 19 20 21 syl2anc
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s )
23 2 3adant3
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) e. C )
24 22 23 eqeltrrd
 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C )
25 1 16 24 ismred
 |-  ( ph -> C e. ( Moore ` X ) )