| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ismred2.ss | 
							 |-  ( ph -> C C_ ~P X )  | 
						
						
							| 2 | 
							
								
							 | 
							ismred2.in | 
							 |-  ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  (/) = (/)  | 
						
						
							| 4 | 
							
								
							 | 
							rint0 | 
							 |-  ( (/) = (/) -> ( X i^i |^| (/) ) = X )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							 |-  ( X i^i |^| (/) ) = X  | 
						
						
							| 6 | 
							
								
							 | 
							0ss | 
							 |-  (/) C_ C  | 
						
						
							| 7 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							sseq1 | 
							 |-  ( s = (/) -> ( s C_ C <-> (/) C_ C ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							anbi2d | 
							 |-  ( s = (/) -> ( ( ph /\ s C_ C ) <-> ( ph /\ (/) C_ C ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							inteq | 
							 |-  ( s = (/) -> |^| s = |^| (/) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ineq2d | 
							 |-  ( s = (/) -> ( X i^i |^| s ) = ( X i^i |^| (/) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eleq1d | 
							 |-  ( s = (/) -> ( ( X i^i |^| s ) e. C <-> ( X i^i |^| (/) ) e. C ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							imbi12d | 
							 |-  ( s = (/) -> ( ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) <-> ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C ) ) )  | 
						
						
							| 14 | 
							
								7 13 2
							 | 
							vtocl | 
							 |-  ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							mpan2 | 
							 |-  ( ph -> ( X i^i |^| (/) ) e. C )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							eqeltrrid | 
							 |-  ( ph -> X e. C )  | 
						
						
							| 17 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ C )  | 
						
						
							| 18 | 
							
								1
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> C C_ ~P X )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sstrd | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ ~P X )  | 
						
						
							| 20 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s =/= (/) )  | 
						
						
							| 21 | 
							
								
							 | 
							rintn0 | 
							 |-  ( ( s C_ ~P X /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							syl2anc | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s )  | 
						
						
							| 23 | 
							
								2
							 | 
							3adant3 | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) e. C )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C )  | 
						
						
							| 25 | 
							
								1 16 24
							 | 
							ismred | 
							 |-  ( ph -> C e. ( Moore ` X ) )  |