Metamath Proof Explorer


Theorem ismri2d

Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2.1
|- N = ( mrCls ` A )
ismri2.2
|- I = ( mrInd ` A )
ismri2d.3
|- ( ph -> A e. ( Moore ` X ) )
ismri2d.4
|- ( ph -> S C_ X )
Assertion ismri2d
|- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) )

Proof

Step Hyp Ref Expression
1 ismri2.1
 |-  N = ( mrCls ` A )
2 ismri2.2
 |-  I = ( mrInd ` A )
3 ismri2d.3
 |-  ( ph -> A e. ( Moore ` X ) )
4 ismri2d.4
 |-  ( ph -> S C_ X )
5 1 2 ismri2
 |-  ( ( A e. ( Moore ` X ) /\ S C_ X ) -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) )
6 3 4 5 syl2anc
 |-  ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) )