Step |
Hyp |
Ref |
Expression |
1 |
|
ismri2dad.1 |
|- N = ( mrCls ` A ) |
2 |
|
ismri2dad.2 |
|- I = ( mrInd ` A ) |
3 |
|
ismri2dad.3 |
|- ( ph -> A e. ( Moore ` X ) ) |
4 |
|
ismri2dad.4 |
|- ( ph -> S e. I ) |
5 |
|
ismri2dad.5 |
|- ( ph -> Y e. S ) |
6 |
2 3 4
|
mrissd |
|- ( ph -> S C_ X ) |
7 |
1 2 3 6
|
ismri2d |
|- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
8 |
4 7
|
mpbid |
|- ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) |
9 |
|
simpr |
|- ( ( ph /\ x = Y ) -> x = Y ) |
10 |
9
|
sneqd |
|- ( ( ph /\ x = Y ) -> { x } = { Y } ) |
11 |
10
|
difeq2d |
|- ( ( ph /\ x = Y ) -> ( S \ { x } ) = ( S \ { Y } ) ) |
12 |
11
|
fveq2d |
|- ( ( ph /\ x = Y ) -> ( N ` ( S \ { x } ) ) = ( N ` ( S \ { Y } ) ) ) |
13 |
9 12
|
eleq12d |
|- ( ( ph /\ x = Y ) -> ( x e. ( N ` ( S \ { x } ) ) <-> Y e. ( N ` ( S \ { Y } ) ) ) ) |
14 |
13
|
notbid |
|- ( ( ph /\ x = Y ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> -. Y e. ( N ` ( S \ { Y } ) ) ) ) |
15 |
5 14
|
rspcdv |
|- ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) -> -. Y e. ( N ` ( S \ { Y } ) ) ) ) |
16 |
8 15
|
mpd |
|- ( ph -> -. Y e. ( N ` ( S \ { Y } ) ) ) |