Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismri2.1 | |- N = ( mrCls ` A ) | |
| ismri2.2 | |- I = ( mrInd ` A ) | ||
| ismri2d.3 | |- ( ph -> A e. ( Moore ` X ) ) | ||
| ismri2d.4 | |- ( ph -> S C_ X ) | ||
| ismri2dd.5 | |- ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) | ||
| Assertion | ismri2dd | |- ( ph -> S e. I ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ismri2.1 | |- N = ( mrCls ` A ) | |
| 2 | ismri2.2 | |- I = ( mrInd ` A ) | |
| 3 | ismri2d.3 | |- ( ph -> A e. ( Moore ` X ) ) | |
| 4 | ismri2d.4 | |- ( ph -> S C_ X ) | |
| 5 | ismri2dd.5 |  |-  ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) | |
| 6 | 1 2 3 4 | ismri2d |  |-  ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) | 
| 7 | 5 6 | mpbird | |- ( ph -> S e. I ) |