| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isms.j |
|- J = ( TopOpen ` K ) |
| 2 |
|
isms.x |
|- X = ( Base ` K ) |
| 3 |
|
isms.d |
|- D = ( ( dist ` K ) |` ( X X. X ) ) |
| 4 |
|
fveq2 |
|- ( f = K -> ( dist ` f ) = ( dist ` K ) ) |
| 5 |
|
fveq2 |
|- ( f = K -> ( Base ` f ) = ( Base ` K ) ) |
| 6 |
5 2
|
eqtr4di |
|- ( f = K -> ( Base ` f ) = X ) |
| 7 |
6
|
sqxpeqd |
|- ( f = K -> ( ( Base ` f ) X. ( Base ` f ) ) = ( X X. X ) ) |
| 8 |
4 7
|
reseq12d |
|- ( f = K -> ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) = ( ( dist ` K ) |` ( X X. X ) ) ) |
| 9 |
8 3
|
eqtr4di |
|- ( f = K -> ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) = D ) |
| 10 |
6
|
fveq2d |
|- ( f = K -> ( Met ` ( Base ` f ) ) = ( Met ` X ) ) |
| 11 |
9 10
|
eleq12d |
|- ( f = K -> ( ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) <-> D e. ( Met ` X ) ) ) |
| 12 |
|
df-ms |
|- MetSp = { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } |
| 13 |
11 12
|
elrab2 |
|- ( K e. MetSp <-> ( K e. *MetSp /\ D e. ( Met ` X ) ) ) |