| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isms.j |  |-  J = ( TopOpen ` K ) | 
						
							| 2 |  | isms.x |  |-  X = ( Base ` K ) | 
						
							| 3 |  | isms.d |  |-  D = ( ( dist ` K ) |` ( X X. X ) ) | 
						
							| 4 |  | fveq2 |  |-  ( f = K -> ( dist ` f ) = ( dist ` K ) ) | 
						
							| 5 |  | fveq2 |  |-  ( f = K -> ( Base ` f ) = ( Base ` K ) ) | 
						
							| 6 | 5 2 | eqtr4di |  |-  ( f = K -> ( Base ` f ) = X ) | 
						
							| 7 | 6 | sqxpeqd |  |-  ( f = K -> ( ( Base ` f ) X. ( Base ` f ) ) = ( X X. X ) ) | 
						
							| 8 | 4 7 | reseq12d |  |-  ( f = K -> ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) = ( ( dist ` K ) |` ( X X. X ) ) ) | 
						
							| 9 | 8 3 | eqtr4di |  |-  ( f = K -> ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) = D ) | 
						
							| 10 | 6 | fveq2d |  |-  ( f = K -> ( Met ` ( Base ` f ) ) = ( Met ` X ) ) | 
						
							| 11 | 9 10 | eleq12d |  |-  ( f = K -> ( ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) <-> D e. ( Met ` X ) ) ) | 
						
							| 12 |  | df-ms |  |-  MetSp = { f e. *MetSp | ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) e. ( Met ` ( Base ` f ) ) } | 
						
							| 13 | 11 12 | elrab2 |  |-  ( K e. MetSp <-> ( K e. *MetSp /\ D e. ( Met ` X ) ) ) |