| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isms.j |
|- J = ( TopOpen ` K ) |
| 2 |
|
isms.x |
|- X = ( Base ` K ) |
| 3 |
|
isms.d |
|- D = ( ( dist ` K ) |` ( X X. X ) ) |
| 4 |
1 2 3
|
isxms2 |
|- ( K e. *MetSp <-> ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) ) |
| 5 |
4
|
anbi1i |
|- ( ( K e. *MetSp /\ D e. ( Met ` X ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
| 6 |
1 2 3
|
isms |
|- ( K e. MetSp <-> ( K e. *MetSp /\ D e. ( Met ` X ) ) ) |
| 7 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 8 |
7
|
pm4.71ri |
|- ( D e. ( Met ` X ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) |
| 9 |
8
|
anbi1i |
|- ( ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) /\ J = ( MetOpen ` D ) ) ) |
| 10 |
|
an32 |
|- ( ( ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
| 11 |
9 10
|
bitri |
|- ( ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
| 12 |
5 6 11
|
3bitr4i |
|- ( K e. MetSp <-> ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) ) |