Step |
Hyp |
Ref |
Expression |
1 |
|
isms.j |
|- J = ( TopOpen ` K ) |
2 |
|
isms.x |
|- X = ( Base ` K ) |
3 |
|
isms.d |
|- D = ( ( dist ` K ) |` ( X X. X ) ) |
4 |
1 2 3
|
isxms2 |
|- ( K e. *MetSp <-> ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) ) |
5 |
4
|
anbi1i |
|- ( ( K e. *MetSp /\ D e. ( Met ` X ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
6 |
1 2 3
|
isms |
|- ( K e. MetSp <-> ( K e. *MetSp /\ D e. ( Met ` X ) ) ) |
7 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
8 |
7
|
pm4.71ri |
|- ( D e. ( Met ` X ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) |
9 |
8
|
anbi1i |
|- ( ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) /\ J = ( MetOpen ` D ) ) ) |
10 |
|
an32 |
|- ( ( ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
11 |
9 10
|
bitri |
|- ( ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
12 |
5 6 11
|
3bitr4i |
|- ( K e. MetSp <-> ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) ) |