| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natfval.1 |  |-  N = ( C Nat D ) | 
						
							| 2 |  | natfval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | natfval.h |  |-  H = ( Hom ` C ) | 
						
							| 4 |  | natfval.j |  |-  J = ( Hom ` D ) | 
						
							| 5 |  | natfval.o |  |-  .x. = ( comp ` D ) | 
						
							| 6 |  | isnat.f |  |-  ( ph -> F ( C Func D ) G ) | 
						
							| 7 |  | isnat.g |  |-  ( ph -> K ( C Func D ) L ) | 
						
							| 8 | 1 2 3 4 5 | natfval |  |-  N = ( f e. ( C Func D ) , g e. ( C Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> N = ( f e. ( C Func D ) , g e. ( C Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } ) ) | 
						
							| 10 |  | fvexd |  |-  ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` f ) e. _V ) | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> f = <. F , G >. ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` f ) = ( 1st ` <. F , G >. ) ) | 
						
							| 13 |  | relfunc |  |-  Rel ( C Func D ) | 
						
							| 14 |  | brrelex12 |  |-  ( ( Rel ( C Func D ) /\ F ( C Func D ) G ) -> ( F e. _V /\ G e. _V ) ) | 
						
							| 15 | 13 6 14 | sylancr |  |-  ( ph -> ( F e. _V /\ G e. _V ) ) | 
						
							| 16 |  | op1stg |  |-  ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( 1st ` <. F , G >. ) = F ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` <. F , G >. ) = F ) | 
						
							| 19 | 12 18 | eqtrd |  |-  ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> ( 1st ` f ) = F ) | 
						
							| 20 |  | fvexd |  |-  ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` g ) e. _V ) | 
						
							| 21 |  | simplrr |  |-  ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> g = <. K , L >. ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` g ) = ( 1st ` <. K , L >. ) ) | 
						
							| 23 |  | brrelex12 |  |-  ( ( Rel ( C Func D ) /\ K ( C Func D ) L ) -> ( K e. _V /\ L e. _V ) ) | 
						
							| 24 | 13 7 23 | sylancr |  |-  ( ph -> ( K e. _V /\ L e. _V ) ) | 
						
							| 25 |  | op1stg |  |-  ( ( K e. _V /\ L e. _V ) -> ( 1st ` <. K , L >. ) = K ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ( 1st ` <. K , L >. ) = K ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` <. K , L >. ) = K ) | 
						
							| 28 | 22 27 | eqtrd |  |-  ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> ( 1st ` g ) = K ) | 
						
							| 29 |  | simplr |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> r = F ) | 
						
							| 30 | 29 | fveq1d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( r ` x ) = ( F ` x ) ) | 
						
							| 31 |  | simpr |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> s = K ) | 
						
							| 32 | 31 | fveq1d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( s ` x ) = ( K ` x ) ) | 
						
							| 33 | 30 32 | oveq12d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( r ` x ) J ( s ` x ) ) = ( ( F ` x ) J ( K ` x ) ) ) | 
						
							| 34 | 33 | ixpeq2dv |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> X_ x e. B ( ( r ` x ) J ( s ` x ) ) = X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) | 
						
							| 35 | 29 | fveq1d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( r ` y ) = ( F ` y ) ) | 
						
							| 36 | 30 35 | opeq12d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> <. ( r ` x ) , ( r ` y ) >. = <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 37 | 31 | fveq1d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( s ` y ) = ( K ` y ) ) | 
						
							| 38 | 36 37 | oveq12d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) = ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ) | 
						
							| 39 |  | eqidd |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( a ` y ) = ( a ` y ) ) | 
						
							| 40 | 11 | ad2antrr |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> f = <. F , G >. ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` f ) = ( 2nd ` <. F , G >. ) ) | 
						
							| 42 |  | op2ndg |  |-  ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) | 
						
							| 43 | 15 42 | syl |  |-  ( ph -> ( 2nd ` <. F , G >. ) = G ) | 
						
							| 44 | 43 | ad3antrrr |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` <. F , G >. ) = G ) | 
						
							| 45 | 41 44 | eqtrd |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` f ) = G ) | 
						
							| 46 | 45 | oveqd |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( x ( 2nd ` f ) y ) = ( x G y ) ) | 
						
							| 47 | 46 | fveq1d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( x ( 2nd ` f ) y ) ` h ) = ( ( x G y ) ` h ) ) | 
						
							| 48 | 38 39 47 | oveq123d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) ) | 
						
							| 49 | 30 32 | opeq12d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> <. ( r ` x ) , ( s ` x ) >. = <. ( F ` x ) , ( K ` x ) >. ) | 
						
							| 50 | 49 37 | oveq12d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) = ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ) | 
						
							| 51 | 21 | adantr |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> g = <. K , L >. ) | 
						
							| 52 | 51 | fveq2d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` g ) = ( 2nd ` <. K , L >. ) ) | 
						
							| 53 |  | op2ndg |  |-  ( ( K e. _V /\ L e. _V ) -> ( 2nd ` <. K , L >. ) = L ) | 
						
							| 54 | 24 53 | syl |  |-  ( ph -> ( 2nd ` <. K , L >. ) = L ) | 
						
							| 55 | 54 | ad3antrrr |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` <. K , L >. ) = L ) | 
						
							| 56 | 52 55 | eqtrd |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( 2nd ` g ) = L ) | 
						
							| 57 | 56 | oveqd |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( x ( 2nd ` g ) y ) = ( x L y ) ) | 
						
							| 58 | 57 | fveq1d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( x ( 2nd ` g ) y ) ` h ) = ( ( x L y ) ` h ) ) | 
						
							| 59 |  | eqidd |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( a ` x ) = ( a ` x ) ) | 
						
							| 60 | 50 58 59 | oveq123d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) | 
						
							| 61 | 48 60 | eqeq12d |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) <-> ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) ) | 
						
							| 62 | 61 | ralbidv |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) <-> A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) ) | 
						
							| 63 | 62 | 2ralbidv |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> ( A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) <-> A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) ) ) | 
						
							| 64 | 34 63 | rabeqbidv |  |-  ( ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) /\ s = K ) -> { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) | 
						
							| 65 | 20 28 64 | csbied2 |  |-  ( ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) /\ r = F ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) | 
						
							| 66 | 10 19 65 | csbied2 |  |-  ( ( ph /\ ( f = <. F , G >. /\ g = <. K , L >. ) ) -> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. B ( ( r ` x ) J ( s ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. .x. ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. .x. ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) | 
						
							| 67 |  | df-br |  |-  ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) | 
						
							| 68 | 6 67 | sylib |  |-  ( ph -> <. F , G >. e. ( C Func D ) ) | 
						
							| 69 |  | df-br |  |-  ( K ( C Func D ) L <-> <. K , L >. e. ( C Func D ) ) | 
						
							| 70 | 7 69 | sylib |  |-  ( ph -> <. K , L >. e. ( C Func D ) ) | 
						
							| 71 |  | ovex |  |-  ( ( F ` x ) J ( K ` x ) ) e. _V | 
						
							| 72 | 71 | rgenw |  |-  A. x e. B ( ( F ` x ) J ( K ` x ) ) e. _V | 
						
							| 73 |  | ixpexg |  |-  ( A. x e. B ( ( F ` x ) J ( K ` x ) ) e. _V -> X_ x e. B ( ( F ` x ) J ( K ` x ) ) e. _V ) | 
						
							| 74 | 72 73 | ax-mp |  |-  X_ x e. B ( ( F ` x ) J ( K ` x ) ) e. _V | 
						
							| 75 | 74 | rabex |  |-  { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } e. _V | 
						
							| 76 | 75 | a1i |  |-  ( ph -> { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } e. _V ) | 
						
							| 77 | 9 66 68 70 76 | ovmpod |  |-  ( ph -> ( <. F , G >. N <. K , L >. ) = { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) | 
						
							| 78 | 77 | eleq2d |  |-  ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> A e. { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } ) ) | 
						
							| 79 |  | fveq1 |  |-  ( a = A -> ( a ` y ) = ( A ` y ) ) | 
						
							| 80 | 79 | oveq1d |  |-  ( a = A -> ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) ) | 
						
							| 81 |  | fveq1 |  |-  ( a = A -> ( a ` x ) = ( A ` x ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( a = A -> ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) | 
						
							| 83 | 80 82 | eqeq12d |  |-  ( a = A -> ( ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) <-> ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) | 
						
							| 84 | 83 | ralbidv |  |-  ( a = A -> ( A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) <-> A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) | 
						
							| 85 | 84 | 2ralbidv |  |-  ( a = A -> ( A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) <-> A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) | 
						
							| 86 | 85 | elrab |  |-  ( A e. { a e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) | A. x e. B A. y e. B A. h e. ( x H y ) ( ( a ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( a ` x ) ) } <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) | 
						
							| 87 | 78 86 | bitrdi |  |-  ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) ) |