| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natfval.1 |  |-  N = ( C Nat D ) | 
						
							| 2 |  | natfval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | natfval.h |  |-  H = ( Hom ` C ) | 
						
							| 4 |  | natfval.j |  |-  J = ( Hom ` D ) | 
						
							| 5 |  | natfval.o |  |-  .x. = ( comp ` D ) | 
						
							| 6 |  | isnat2.f |  |-  ( ph -> F e. ( C Func D ) ) | 
						
							| 7 |  | isnat2.g |  |-  ( ph -> G e. ( C Func D ) ) | 
						
							| 8 |  | relfunc |  |-  Rel ( C Func D ) | 
						
							| 9 |  | 1st2nd |  |-  ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) | 
						
							| 10 | 8 6 9 | sylancr |  |-  ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) | 
						
							| 11 |  | 1st2nd |  |-  ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) | 
						
							| 12 | 8 7 11 | sylancr |  |-  ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) | 
						
							| 13 | 10 12 | oveq12d |  |-  ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) | 
						
							| 14 | 13 | eleq2d |  |-  ( ph -> ( A e. ( F N G ) <-> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) ) | 
						
							| 15 |  | 1st2ndbr |  |-  ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) | 
						
							| 16 | 8 6 15 | sylancr |  |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) | 
						
							| 17 |  | 1st2ndbr |  |-  ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) | 
						
							| 18 | 8 7 17 | sylancr |  |-  ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) | 
						
							| 19 | 1 2 3 4 5 16 18 | isnat |  |-  ( ph -> ( A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) | 
						
							| 20 | 14 19 | bitrd |  |-  ( ph -> ( A e. ( F N G ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) |