| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 |  |-  N = ( S normOp T ) | 
						
							| 2 | 1 | nghmfval |  |-  ( S NGHom T ) = ( `' N " RR ) | 
						
							| 3 | 2 | eleq2i |  |-  ( F e. ( S NGHom T ) <-> F e. ( `' N " RR ) ) | 
						
							| 4 |  | n0i |  |-  ( F e. ( `' N " RR ) -> -. ( `' N " RR ) = (/) ) | 
						
							| 5 |  | nmoffn |  |-  normOp Fn ( NrmGrp X. NrmGrp ) | 
						
							| 6 | 5 | fndmi |  |-  dom normOp = ( NrmGrp X. NrmGrp ) | 
						
							| 7 | 6 | ndmov |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S normOp T ) = (/) ) | 
						
							| 8 | 1 7 | eqtrid |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> N = (/) ) | 
						
							| 9 | 8 | cnveqd |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = `' (/) ) | 
						
							| 10 |  | cnv0 |  |-  `' (/) = (/) | 
						
							| 11 | 9 10 | eqtrdi |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = (/) ) | 
						
							| 12 | 11 | imaeq1d |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = ( (/) " RR ) ) | 
						
							| 13 |  | 0ima |  |-  ( (/) " RR ) = (/) | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = (/) ) | 
						
							| 15 | 4 14 | nsyl2 |  |-  ( F e. ( `' N " RR ) -> ( S e. NrmGrp /\ T e. NrmGrp ) ) | 
						
							| 16 | 1 | nmof |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N : ( S GrpHom T ) --> RR* ) | 
						
							| 17 |  | ffn |  |-  ( N : ( S GrpHom T ) --> RR* -> N Fn ( S GrpHom T ) ) | 
						
							| 18 |  | elpreima |  |-  ( N Fn ( S GrpHom T ) -> ( F e. ( `' N " RR ) <-> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) | 
						
							| 19 | 16 17 18 | 3syl |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( F e. ( `' N " RR ) <-> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) | 
						
							| 20 | 15 19 | biadanii |  |-  ( F e. ( `' N " RR ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) | 
						
							| 21 | 3 20 | bitri |  |-  ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) |