Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nmofval.1 | |- N = ( S normOp T ) |
|
Assertion | isnghm2 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | |- N = ( S normOp T ) |
|
2 | 1 | isnghm | |- ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) |
3 | 2 | baib | |- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( F e. ( S NGHom T ) <-> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) |
4 | 3 | baibd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) |
5 | 4 | 3impa | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) |