Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
2 |
1
|
isnghm2 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) |
3 |
1
|
nmocl |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
4 |
1
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |
5 |
|
ge0gtmnf |
|- ( ( ( N ` F ) e. RR* /\ 0 <_ ( N ` F ) ) -> -oo < ( N ` F ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> -oo < ( N ` F ) ) |
7 |
|
xrrebnd |
|- ( ( N ` F ) e. RR* -> ( ( N ` F ) e. RR <-> ( -oo < ( N ` F ) /\ ( N ` F ) < +oo ) ) ) |
8 |
7
|
baibd |
|- ( ( ( N ` F ) e. RR* /\ -oo < ( N ` F ) ) -> ( ( N ` F ) e. RR <-> ( N ` F ) < +oo ) ) |
9 |
3 6 8
|
syl2anc |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( ( N ` F ) e. RR <-> ( N ` F ) < +oo ) ) |
10 |
2 9
|
bitrd |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) < +oo ) ) |