| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 |  |-  N = ( S normOp T ) | 
						
							| 2 | 1 | isnghm2 |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) | 
						
							| 3 | 1 | nmocl |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) | 
						
							| 4 | 1 | nmoge0 |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) | 
						
							| 5 |  | ge0gtmnf |  |-  ( ( ( N ` F ) e. RR* /\ 0 <_ ( N ` F ) ) -> -oo < ( N ` F ) ) | 
						
							| 6 | 3 4 5 | syl2anc |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> -oo < ( N ` F ) ) | 
						
							| 7 |  | xrrebnd |  |-  ( ( N ` F ) e. RR* -> ( ( N ` F ) e. RR <-> ( -oo < ( N ` F ) /\ ( N ` F ) < +oo ) ) ) | 
						
							| 8 | 7 | baibd |  |-  ( ( ( N ` F ) e. RR* /\ -oo < ( N ` F ) ) -> ( ( N ` F ) e. RR <-> ( N ` F ) < +oo ) ) | 
						
							| 9 | 3 6 8 | syl2anc |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( ( N ` F ) e. RR <-> ( N ` F ) < +oo ) ) | 
						
							| 10 | 2 9 | bitrd |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) < +oo ) ) |