Step |
Hyp |
Ref |
Expression |
1 |
|
isngp.n |
|- N = ( norm ` G ) |
2 |
|
isngp.z |
|- .- = ( -g ` G ) |
3 |
|
isngp.d |
|- D = ( dist ` G ) |
4 |
|
elin |
|- ( G e. ( Grp i^i MetSp ) <-> ( G e. Grp /\ G e. MetSp ) ) |
5 |
4
|
anbi1i |
|- ( ( G e. ( Grp i^i MetSp ) /\ ( N o. .- ) C_ D ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
6 |
|
fveq2 |
|- ( g = G -> ( norm ` g ) = ( norm ` G ) ) |
7 |
6 1
|
eqtr4di |
|- ( g = G -> ( norm ` g ) = N ) |
8 |
|
fveq2 |
|- ( g = G -> ( -g ` g ) = ( -g ` G ) ) |
9 |
8 2
|
eqtr4di |
|- ( g = G -> ( -g ` g ) = .- ) |
10 |
7 9
|
coeq12d |
|- ( g = G -> ( ( norm ` g ) o. ( -g ` g ) ) = ( N o. .- ) ) |
11 |
|
fveq2 |
|- ( g = G -> ( dist ` g ) = ( dist ` G ) ) |
12 |
11 3
|
eqtr4di |
|- ( g = G -> ( dist ` g ) = D ) |
13 |
10 12
|
sseq12d |
|- ( g = G -> ( ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) <-> ( N o. .- ) C_ D ) ) |
14 |
|
df-ngp |
|- NrmGrp = { g e. ( Grp i^i MetSp ) | ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) } |
15 |
13 14
|
elrab2 |
|- ( G e. NrmGrp <-> ( G e. ( Grp i^i MetSp ) /\ ( N o. .- ) C_ D ) ) |
16 |
|
df-3an |
|- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
17 |
5 15 16
|
3bitr4i |
|- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |