Step |
Hyp |
Ref |
Expression |
1 |
|
isngp.n |
|- N = ( norm ` G ) |
2 |
|
isngp.z |
|- .- = ( -g ` G ) |
3 |
|
isngp.d |
|- D = ( dist ` G ) |
4 |
|
isngp2.x |
|- X = ( Base ` G ) |
5 |
|
isngp2.e |
|- E = ( D |` ( X X. X ) ) |
6 |
1 2 3
|
isngp |
|- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |
7 |
|
resss |
|- ( D |` ( X X. X ) ) C_ D |
8 |
5 7
|
eqsstri |
|- E C_ D |
9 |
|
sseq1 |
|- ( ( N o. .- ) = E -> ( ( N o. .- ) C_ D <-> E C_ D ) ) |
10 |
8 9
|
mpbiri |
|- ( ( N o. .- ) = E -> ( N o. .- ) C_ D ) |
11 |
3
|
reseq1i |
|- ( D |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) ) |
12 |
5 11
|
eqtri |
|- E = ( ( dist ` G ) |` ( X X. X ) ) |
13 |
4 12
|
msmet |
|- ( G e. MetSp -> E e. ( Met ` X ) ) |
14 |
1 4 3 5
|
nmf2 |
|- ( ( G e. Grp /\ E e. ( Met ` X ) ) -> N : X --> RR ) |
15 |
13 14
|
sylan2 |
|- ( ( G e. Grp /\ G e. MetSp ) -> N : X --> RR ) |
16 |
4 2
|
grpsubf |
|- ( G e. Grp -> .- : ( X X. X ) --> X ) |
17 |
16
|
ad2antrr |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> .- : ( X X. X ) --> X ) |
18 |
|
fco |
|- ( ( N : X --> RR /\ .- : ( X X. X ) --> X ) -> ( N o. .- ) : ( X X. X ) --> RR ) |
19 |
15 17 18
|
syl2an2r |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) : ( X X. X ) --> RR ) |
20 |
19
|
fdmd |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> dom ( N o. .- ) = ( X X. X ) ) |
21 |
20
|
reseq2d |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( E |` dom ( N o. .- ) ) = ( E |` ( X X. X ) ) ) |
22 |
4 12
|
msf |
|- ( G e. MetSp -> E : ( X X. X ) --> RR ) |
23 |
22
|
ad2antlr |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> E : ( X X. X ) --> RR ) |
24 |
23
|
ffund |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> Fun E ) |
25 |
|
simpr |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ D ) |
26 |
|
ssv |
|- RR C_ _V |
27 |
|
fss |
|- ( ( ( N o. .- ) : ( X X. X ) --> RR /\ RR C_ _V ) -> ( N o. .- ) : ( X X. X ) --> _V ) |
28 |
19 26 27
|
sylancl |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) : ( X X. X ) --> _V ) |
29 |
|
fssxp |
|- ( ( N o. .- ) : ( X X. X ) --> _V -> ( N o. .- ) C_ ( ( X X. X ) X. _V ) ) |
30 |
28 29
|
syl |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ ( ( X X. X ) X. _V ) ) |
31 |
25 30
|
ssind |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ ( D i^i ( ( X X. X ) X. _V ) ) ) |
32 |
|
df-res |
|- ( D |` ( X X. X ) ) = ( D i^i ( ( X X. X ) X. _V ) ) |
33 |
5 32
|
eqtri |
|- E = ( D i^i ( ( X X. X ) X. _V ) ) |
34 |
31 33
|
sseqtrrdi |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) C_ E ) |
35 |
|
funssres |
|- ( ( Fun E /\ ( N o. .- ) C_ E ) -> ( E |` dom ( N o. .- ) ) = ( N o. .- ) ) |
36 |
24 34 35
|
syl2anc |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( E |` dom ( N o. .- ) ) = ( N o. .- ) ) |
37 |
|
ffn |
|- ( E : ( X X. X ) --> RR -> E Fn ( X X. X ) ) |
38 |
|
fnresdm |
|- ( E Fn ( X X. X ) -> ( E |` ( X X. X ) ) = E ) |
39 |
23 37 38
|
3syl |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( E |` ( X X. X ) ) = E ) |
40 |
21 36 39
|
3eqtr3d |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) -> ( N o. .- ) = E ) |
41 |
40
|
ex |
|- ( ( G e. Grp /\ G e. MetSp ) -> ( ( N o. .- ) C_ D -> ( N o. .- ) = E ) ) |
42 |
10 41
|
impbid2 |
|- ( ( G e. Grp /\ G e. MetSp ) -> ( ( N o. .- ) = E <-> ( N o. .- ) C_ D ) ) |
43 |
42
|
pm5.32i |
|- ( ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) = E ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
44 |
|
df-3an |
|- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) = E ) ) |
45 |
|
df-3an |
|- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
46 |
43 44 45
|
3bitr4i |
|- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |
47 |
6 46
|
bitr4i |
|- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = E ) ) |