| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isnlm.v | 
							 |-  V = ( Base ` W )  | 
						
						
							| 2 | 
							
								
							 | 
							isnlm.n | 
							 |-  N = ( norm ` W )  | 
						
						
							| 3 | 
							
								
							 | 
							isnlm.s | 
							 |-  .x. = ( .s ` W )  | 
						
						
							| 4 | 
							
								
							 | 
							isnlm.f | 
							 |-  F = ( Scalar ` W )  | 
						
						
							| 5 | 
							
								
							 | 
							isnlm.k | 
							 |-  K = ( Base ` F )  | 
						
						
							| 6 | 
							
								
							 | 
							isnlm.a | 
							 |-  A = ( norm ` F )  | 
						
						
							| 7 | 
							
								
							 | 
							anass | 
							 |-  ( ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) )  | 
						
						
							| 9 | 
							
								
							 | 
							elin | 
							 |-  ( W e. ( NrmGrp i^i LMod ) <-> ( W e. NrmGrp /\ W e. LMod ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi1i | 
							 |-  ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							bitr4i | 
							 |-  ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anbi1i | 
							 |-  ( ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fvexd | 
							 |-  ( w = W -> ( Scalar ` w ) e. _V )  | 
						
						
							| 14 | 
							
								
							 | 
							id | 
							 |-  ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) )  | 
						
						
							| 16 | 
							
								15 4
							 | 
							eqtr4di | 
							 |-  ( w = W -> ( Scalar ` w ) = F )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							sylan9eqr | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F )  | 
						
						
							| 18 | 
							
								17
							 | 
							eleq1d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( f e. NrmRing <-> F e. NrmRing ) )  | 
						
						
							| 19 | 
							
								17
							 | 
							fveq2d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) )  | 
						
						
							| 20 | 
							
								19 5
							 | 
							eqtr4di | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K )  | 
						
						
							| 21 | 
							
								
							 | 
							simpl | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> w = W )  | 
						
						
							| 22 | 
							
								21
							 | 
							fveq2d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = ( Base ` W ) )  | 
						
						
							| 23 | 
							
								22 1
							 | 
							eqtr4di | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = V )  | 
						
						
							| 24 | 
							
								21
							 | 
							fveq2d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = ( norm ` W ) )  | 
						
						
							| 25 | 
							
								24 2
							 | 
							eqtr4di | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = N )  | 
						
						
							| 26 | 
							
								21
							 | 
							fveq2d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = ( .s ` W ) )  | 
						
						
							| 27 | 
							
								26 3
							 | 
							eqtr4di | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = .x. )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveqd | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( x ( .s ` w ) y ) = ( x .x. y ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							fveq12d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( N ` ( x .x. y ) ) )  | 
						
						
							| 30 | 
							
								17
							 | 
							fveq2d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = ( norm ` F ) )  | 
						
						
							| 31 | 
							
								30 6
							 | 
							eqtr4di | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = A )  | 
						
						
							| 32 | 
							
								31
							 | 
							fveq1d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` f ) ` x ) = ( A ` x ) )  | 
						
						
							| 33 | 
							
								25
							 | 
							fveq1d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` y ) = ( N ` y ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							oveq12d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) = ( ( A ` x ) x. ( N ` y ) ) )  | 
						
						
							| 35 | 
							
								29 34
							 | 
							eqeq12d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) )  | 
						
						
							| 36 | 
							
								23 35
							 | 
							raleqbidv | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) )  | 
						
						
							| 37 | 
							
								20 36
							 | 
							raleqbidv | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) )  | 
						
						
							| 38 | 
							
								18 37
							 | 
							anbi12d | 
							 |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) )  | 
						
						
							| 39 | 
							
								13 38
							 | 
							sbcied | 
							 |-  ( w = W -> ( [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							df-nlm | 
							 |-  NrmMod = { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } | 
						
						
							| 41 | 
							
								39 40
							 | 
							elrab2 | 
							 |-  ( W e. NrmMod <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) )  | 
						
						
							| 42 | 
							
								7 12 41
							 | 
							3bitr4ri | 
							 |-  ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) )  |