| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnlm.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | isnlm.n |  |-  N = ( norm ` W ) | 
						
							| 3 |  | isnlm.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | isnlm.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | isnlm.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | isnlm.a |  |-  A = ( norm ` F ) | 
						
							| 7 |  | anass |  |-  ( ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) | 
						
							| 8 |  | df-3an |  |-  ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) ) | 
						
							| 9 |  | elin |  |-  ( W e. ( NrmGrp i^i LMod ) <-> ( W e. NrmGrp /\ W e. LMod ) ) | 
						
							| 10 | 9 | anbi1i |  |-  ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) <-> ( ( W e. NrmGrp /\ W e. LMod ) /\ F e. NrmRing ) ) | 
						
							| 11 | 8 10 | bitr4i |  |-  ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) <-> ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) ) | 
						
							| 12 | 11 | anbi1i |  |-  ( ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) <-> ( ( W e. ( NrmGrp i^i LMod ) /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) | 
						
							| 13 |  | fvexd |  |-  ( w = W -> ( Scalar ` w ) e. _V ) | 
						
							| 14 |  | id |  |-  ( f = ( Scalar ` w ) -> f = ( Scalar ` w ) ) | 
						
							| 15 |  | fveq2 |  |-  ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) | 
						
							| 16 | 15 4 | eqtr4di |  |-  ( w = W -> ( Scalar ` w ) = F ) | 
						
							| 17 | 14 16 | sylan9eqr |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> f = F ) | 
						
							| 18 | 17 | eleq1d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( f e. NrmRing <-> F e. NrmRing ) ) | 
						
							| 19 | 17 | fveq2d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = ( Base ` F ) ) | 
						
							| 20 | 19 5 | eqtr4di |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` f ) = K ) | 
						
							| 21 |  | simpl |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> w = W ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = ( Base ` W ) ) | 
						
							| 23 | 22 1 | eqtr4di |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( Base ` w ) = V ) | 
						
							| 24 | 21 | fveq2d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = ( norm ` W ) ) | 
						
							| 25 | 24 2 | eqtr4di |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` w ) = N ) | 
						
							| 26 | 21 | fveq2d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = ( .s ` W ) ) | 
						
							| 27 | 26 3 | eqtr4di |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( .s ` w ) = .x. ) | 
						
							| 28 | 27 | oveqd |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( x ( .s ` w ) y ) = ( x .x. y ) ) | 
						
							| 29 | 25 28 | fveq12d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( N ` ( x .x. y ) ) ) | 
						
							| 30 | 17 | fveq2d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = ( norm ` F ) ) | 
						
							| 31 | 30 6 | eqtr4di |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( norm ` f ) = A ) | 
						
							| 32 | 31 | fveq1d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` f ) ` x ) = ( A ` x ) ) | 
						
							| 33 | 25 | fveq1d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( norm ` w ) ` y ) = ( N ` y ) ) | 
						
							| 34 | 32 33 | oveq12d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) | 
						
							| 35 | 29 34 | eqeq12d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) | 
						
							| 36 | 23 35 | raleqbidv |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) | 
						
							| 37 | 20 36 | raleqbidv |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) <-> A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) | 
						
							| 38 | 18 37 | anbi12d |  |-  ( ( w = W /\ f = ( Scalar ` w ) ) -> ( ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) | 
						
							| 39 | 13 38 | sbcied |  |-  ( w = W -> ( [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) <-> ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) | 
						
							| 40 |  | df-nlm |  |-  NrmMod = { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } | 
						
							| 41 | 39 40 | elrab2 |  |-  ( W e. NrmMod <-> ( W e. ( NrmGrp i^i LMod ) /\ ( F e. NrmRing /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) ) | 
						
							| 42 | 7 12 41 | 3bitr4ri |  |-  ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. K A. y e. V ( N ` ( x .x. y ) ) = ( ( A ` x ) x. ( N ` y ) ) ) ) |