Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020) (Proof shortened by NM, 5-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgmcl.b | |- B = ( Base ` M ) |
|
mgmcl.o | |- .o. = ( +g ` M ) |
||
Assertion | isnmgm | |- ( ( X e. B /\ Y e. B /\ ( X .o. Y ) e/ B ) -> M e/ Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmcl.b | |- B = ( Base ` M ) |
|
2 | mgmcl.o | |- .o. = ( +g ` M ) |
|
3 | 1 2 | mgmcl | |- ( ( M e. Mgm /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) |
4 | 3 | 3expib | |- ( M e. Mgm -> ( ( X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) ) |
5 | 4 | com12 | |- ( ( X e. B /\ Y e. B ) -> ( M e. Mgm -> ( X .o. Y ) e. B ) ) |
6 | 5 | nelcon3d | |- ( ( X e. B /\ Y e. B ) -> ( ( X .o. Y ) e/ B -> M e/ Mgm ) ) |
7 | 6 | 3impia | |- ( ( X e. B /\ Y e. B /\ ( X .o. Y ) e/ B ) -> M e/ Mgm ) |