Metamath Proof Explorer


Theorem isnmgm

Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020) (Proof shortened by NM, 5-Feb-2020)

Ref Expression
Hypotheses mgmcl.b
|- B = ( Base ` M )
mgmcl.o
|- .o. = ( +g ` M )
Assertion isnmgm
|- ( ( X e. B /\ Y e. B /\ ( X .o. Y ) e/ B ) -> M e/ Mgm )

Proof

Step Hyp Ref Expression
1 mgmcl.b
 |-  B = ( Base ` M )
2 mgmcl.o
 |-  .o. = ( +g ` M )
3 1 2 mgmcl
 |-  ( ( M e. Mgm /\ X e. B /\ Y e. B ) -> ( X .o. Y ) e. B )
4 3 3expib
 |-  ( M e. Mgm -> ( ( X e. B /\ Y e. B ) -> ( X .o. Y ) e. B ) )
5 4 com12
 |-  ( ( X e. B /\ Y e. B ) -> ( M e. Mgm -> ( X .o. Y ) e. B ) )
6 5 nelcon3d
 |-  ( ( X e. B /\ Y e. B ) -> ( ( X .o. Y ) e/ B -> M e/ Mgm ) )
7 6 3impia
 |-  ( ( X e. B /\ Y e. B /\ ( X .o. Y ) e/ B ) -> M e/ Mgm )