Description: A normed ring is a ring with a norm that makes it into a normed group, and such that the norm is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnrg.1 | |- N = ( norm ` R ) |
|
| isnrg.2 | |- A = ( AbsVal ` R ) |
||
| Assertion | isnrg | |- ( R e. NrmRing <-> ( R e. NrmGrp /\ N e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnrg.1 | |- N = ( norm ` R ) |
|
| 2 | isnrg.2 | |- A = ( AbsVal ` R ) |
|
| 3 | fveq2 | |- ( r = R -> ( norm ` r ) = ( norm ` R ) ) |
|
| 4 | 3 1 | eqtr4di | |- ( r = R -> ( norm ` r ) = N ) |
| 5 | fveq2 | |- ( r = R -> ( AbsVal ` r ) = ( AbsVal ` R ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( r = R -> ( AbsVal ` r ) = A ) |
| 7 | 4 6 | eleq12d | |- ( r = R -> ( ( norm ` r ) e. ( AbsVal ` r ) <-> N e. A ) ) |
| 8 | df-nrg | |- NrmRing = { r e. NrmGrp | ( norm ` r ) e. ( AbsVal ` r ) } |
|
| 9 | 7 8 | elrab2 | |- ( R e. NrmRing <-> ( R e. NrmGrp /\ N e. A ) ) |