Step |
Hyp |
Ref |
Expression |
1 |
|
cardf2 |
|- card : { y | E. x e. On x ~~ y } --> On |
2 |
1
|
fdmi |
|- dom card = { y | E. x e. On x ~~ y } |
3 |
2
|
eleq2i |
|- ( A e. dom card <-> A e. { y | E. x e. On x ~~ y } ) |
4 |
|
relen |
|- Rel ~~ |
5 |
4
|
brrelex2i |
|- ( x ~~ A -> A e. _V ) |
6 |
5
|
rexlimivw |
|- ( E. x e. On x ~~ A -> A e. _V ) |
7 |
|
breq2 |
|- ( y = A -> ( x ~~ y <-> x ~~ A ) ) |
8 |
7
|
rexbidv |
|- ( y = A -> ( E. x e. On x ~~ y <-> E. x e. On x ~~ A ) ) |
9 |
6 8
|
elab3 |
|- ( A e. { y | E. x e. On x ~~ y } <-> E. x e. On x ~~ A ) |
10 |
3 9
|
bitri |
|- ( A e. dom card <-> E. x e. On x ~~ A ) |