| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardf2 |
|- card : { y | E. x e. On x ~~ y } --> On |
| 2 |
1
|
fdmi |
|- dom card = { y | E. x e. On x ~~ y } |
| 3 |
2
|
eleq2i |
|- ( A e. dom card <-> A e. { y | E. x e. On x ~~ y } ) |
| 4 |
|
relen |
|- Rel ~~ |
| 5 |
4
|
brrelex2i |
|- ( x ~~ A -> A e. _V ) |
| 6 |
5
|
rexlimivw |
|- ( E. x e. On x ~~ A -> A e. _V ) |
| 7 |
|
breq2 |
|- ( y = A -> ( x ~~ y <-> x ~~ A ) ) |
| 8 |
7
|
rexbidv |
|- ( y = A -> ( E. x e. On x ~~ y <-> E. x e. On x ~~ A ) ) |
| 9 |
6 8
|
elab3 |
|- ( A e. { y | E. x e. On x ~~ y } <-> E. x e. On x ~~ A ) |
| 10 |
3 9
|
bitri |
|- ( A e. dom card <-> E. x e. On x ~~ A ) |