| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnzr2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 3 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 4 | 2 3 | isnzr |  |-  ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) | 
						
							| 5 | 1 2 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1r ` R ) e. B ) | 
						
							| 7 | 1 3 | ring0cl |  |-  ( R e. Ring -> ( 0g ` R ) e. B ) | 
						
							| 8 | 7 | adantr |  |-  ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 0g ` R ) e. B ) | 
						
							| 9 |  | simpr |  |-  ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 10 |  | df-ne |  |-  ( x =/= y <-> -. x = y ) | 
						
							| 11 |  | neeq1 |  |-  ( x = ( 1r ` R ) -> ( x =/= y <-> ( 1r ` R ) =/= y ) ) | 
						
							| 12 | 10 11 | bitr3id |  |-  ( x = ( 1r ` R ) -> ( -. x = y <-> ( 1r ` R ) =/= y ) ) | 
						
							| 13 |  | neeq2 |  |-  ( y = ( 0g ` R ) -> ( ( 1r ` R ) =/= y <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) | 
						
							| 14 | 12 13 | rspc2ev |  |-  ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> E. x e. B E. y e. B -. x = y ) | 
						
							| 15 | 6 8 9 14 | syl3anc |  |-  ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> E. x e. B E. y e. B -. x = y ) | 
						
							| 16 | 15 | ex |  |-  ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) -> E. x e. B E. y e. B -. x = y ) ) | 
						
							| 17 | 1 2 3 | ring1eq0 |  |-  ( ( R e. Ring /\ x e. B /\ y e. B ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) | 
						
							| 18 | 17 | 3expb |  |-  ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) | 
						
							| 19 | 18 | necon3bd |  |-  ( ( R e. Ring /\ ( x e. B /\ y e. B ) ) -> ( -. x = y -> ( 1r ` R ) =/= ( 0g ` R ) ) ) | 
						
							| 20 | 19 | rexlimdvva |  |-  ( R e. Ring -> ( E. x e. B E. y e. B -. x = y -> ( 1r ` R ) =/= ( 0g ` R ) ) ) | 
						
							| 21 | 16 20 | impbid |  |-  ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> E. x e. B E. y e. B -. x = y ) ) | 
						
							| 22 | 1 | fvexi |  |-  B e. _V | 
						
							| 23 |  | 1sdom |  |-  ( B e. _V -> ( 1o ~< B <-> E. x e. B E. y e. B -. x = y ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  ( 1o ~< B <-> E. x e. B E. y e. B -. x = y ) | 
						
							| 25 | 21 24 | bitr4di |  |-  ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> 1o ~< B ) ) | 
						
							| 26 |  | 1onn |  |-  1o e. _om | 
						
							| 27 |  | sucdom |  |-  ( 1o e. _om -> ( 1o ~< B <-> suc 1o ~<_ B ) ) | 
						
							| 28 | 26 27 | ax-mp |  |-  ( 1o ~< B <-> suc 1o ~<_ B ) | 
						
							| 29 |  | df-2o |  |-  2o = suc 1o | 
						
							| 30 | 29 | breq1i |  |-  ( 2o ~<_ B <-> suc 1o ~<_ B ) | 
						
							| 31 | 28 30 | bitr4i |  |-  ( 1o ~< B <-> 2o ~<_ B ) | 
						
							| 32 | 25 31 | bitrdi |  |-  ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> 2o ~<_ B ) ) | 
						
							| 33 | 32 | pm5.32i |  |-  ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) <-> ( R e. Ring /\ 2o ~<_ B ) ) | 
						
							| 34 | 4 33 | bitri |  |-  ( R e. NzRing <-> ( R e. Ring /\ 2o ~<_ B ) ) |